2D Transformations Homogenized

These 3 transformations are all affine transformations.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix</th>
</tr>
</thead>
</table>
| **Scaling** | \[
 \begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \] |
| **Rotation** | \[
 \begin{bmatrix}
 \cos\theta & -\sin\theta & 0 \\
 \sin\theta & \cos\theta & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \] |
| **Translation** | \[
 \begin{bmatrix}
 1 & 0 & dx \\
 0 & 1 & dy \\
 0 & 0 & 1
 \end{bmatrix}
 \] |
EXAMPLES

• Scaling: Scale by 15 in the x direction, 17 in the y

• Rotation: Rotate by 123°

• Translation: Translate by -16 in the x, $+18$ in the y
2D INVERSE TRANSFORMATIONS

- How do we find the inverse of a transformation?
- Take the inverse of the transformation matrix (thanks to homogenization, they’re all invertible!):

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix Inverse</th>
<th>Does it make sense?</th>
</tr>
</thead>
</table>
| Scaling | \[
\begin{bmatrix}
\frac{1}{s_x} & 0 & 0 \\
0 & \frac{1}{s_y} & 0 \\
0 & 0 & 1
\end{bmatrix}
\] | If you scale something by factor X, the inverse is scaling by 1/X |
| Rotation | \[
\begin{bmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\] | Not so obvious, but can use math! Rotation Matrix is orthonormal, so inverse is just the transpose |
| Translation | \[
\begin{bmatrix}
1 & 0 & -dx \\
0 & 1 & -dy \\
0 & 0 & 1
\end{bmatrix}
\] | If you translate by X, the inverse is translating by -X |
We now have a number of tools at our disposal, we can combine them!

An object in a scene uses many transformations in sequence, how do we represent this in terms of functions?

A transformation is a function; by associativity we can compose functions:
\((f \circ g)(i)\)

This is the same as first applying \(g\) to some input \(i\) then applying \(f\):
\((f(g(i)))\)

Consider our functions \(f\) and \(g\) as matrices \((M_1\) and \(M_2\) respectively) and our input as a vector \(v\)

Our composition is equivalent to \(M_1M_2v\)
We can now form compositions of transformation matrices to form a more complex transformation.

For example, \(TRSv \), which scales point, then rotates, then translates:

\[
\begin{bmatrix}
1 & 0 & dx \\
0 & 1 & dy \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Note that we apply the matrices in sequence right to left, but practically, given associativity, we can compose them and apply the composite to all the vertices in, say, a mesh.

Important: Order Matters!

Matrix Multiplication is not commutative.

Let's do some math...!!!
NOT COMMUTATIVE

Translate by
$x=6$, $y=0$ then
rotate by 45°

Rotate by 45°
then translate by
$x=6$, $y=0$
COMPOSITION (AN EXAMPLE) (2D) (1/2)

- Start:
- Goal:

Important concept: Make the problem simpler

Translate object to origin first, scale, rotate, and translate back $T^{-1}RST$

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos90 & -\sin90 & 0 \\ \sin90 & \cos90 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

Apply to all vertices

Rotate 90°
Uniform Scale 3x
Both around object’s center, not the origin
COMPOSITION (AN EXAMPLE) (2D) (2/2)

- $T^{-1}RST$

- But what if we mixed up the order? Let’s try $RT^{-1}ST$

- $\begin{bmatrix} \cos90 & -\sin90 & 0 \\ \sin90 & \cos90 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$

- Oops! We managed to scale it properly but when we rotated it we rotated the object about the origin, not its own center, shifting its position… **Order Matters!**
ASIDE: TRANSFORMING COORDINATE AXES

- We understand linear transformations as changing the position of vertices relative to the standard axes.
- Can also think of transforming the coordinate axes themselves.
- Just as in matrix composition, be careful of which order you modify your coordinate system.
EXAMPLE IN 3D!

- Let’s take some 3D object, say a cube, centered at (2,2,2)
- Rotate in object’s space by 30° around x axis, 60° around y and 90° around z
- Scale in object space by 1 in the x, 2 in the y, 3 in the z
- Translate by (2,2,4)
- Transformation Sequence: \(TT_0^{-1} S_{xy} R_{xy} R_{xz} R_{yz} T_0 \), where \(T_0 \) translates to (0,0)

\[
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
\cos90 & \sin90 & 0 & 0 \\
-\sin90 & \cos90 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
\cos60 & 0 & \sin60 & 0 \\
0 & 1 & 0 & 0 \\
-\sin60 & 0 & \cos60 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos30 & \sin30 & 0 \\
0 & -\sin30 & \cos30 & 0 \\
0 & 0 & 1 & -2 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
There are three aspects of the viewing process, all of which are implemented in the pipeline,

- Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Clipping
- Setting the view volume
THE OPENGL CAMERA

• In OpenGL, initially the object and camera frames are the same
 • Default model-view matrix is an identity

• The camera is located at origin and points in the negative z direction

• OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 • Default projection matrix is an identity
DEFAULT PROJECTION

Default projection is orthogonal
MOVING THE CAMERA FRAME

• If we want to visualize objects with both positive and negative z values we can either
 • Move the camera in the positive z direction
 • Translate the camera frame
 • Move the objects in the negative z direction
 • Translate the world frame

• Both of these views are equivalent and are determined by the model-view matrix
 • Want a translation \((\text{Translate}(0.0,0.0,-d));\)
 • \(d > 0\)
MOVING CAMERA BACK FROM ORIGIN

frames after translation by \(-d\)

\[d > 0 \]
MOVING THE CAMERA

- We can move the camera to any desired position by a sequence of rotations and translations.
- Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix $C = TR$
PROJECTIONS AND NORMALIZATION

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume
 \[x_p = x \]
 \[y_p = y \]
 \[z_p = 0 \]
- Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views
HOMOGENEOUS COORDINATE REPRESENTATION

default orthographic projection

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]
\[w_p = 1 \]

\[\mathbf{p}_p = \mathbf{Mp} \]

\[\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \]

In practice, we can let \(\mathbf{M} = \mathbf{I} \) and set the \(z \) term to zero later.