Constraint Satisfaction Problems III
K-consistency, structure, iterative improvement

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Reminder: CSPs

- **CSPs:**
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

- **Goals:**
 - Here: find any solution
 - Also: find all, find best, etc.
function Backtracking-Search
(csp) returns solution/failure

return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking
(assignment, csp) returns soln/failure
if assignment is complete then return assignment

var ← Select-Unassigned-Variable(VARIABLES[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
 if value is consistent with assignment given CONSTRAINTS[csp] then
 add \{var = value\} to assignment
 result ← Recursive-Backtracking(assignment, csp)
 if result ≠ failure then return result
 remove \{var = value\} from assignment

return failure
Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it’s all still NP-hard

- Filtering: Can we detect inevitable failure early?

- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)

- Structure: Can we exploit the problem structure?
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are simultaneously consistent:

- Arc consistency detects failure earlier than forward checking
 - But requires more work during search
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

What went wrong here?
K-Consistency
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!

Why?
- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- ...

- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as connected components of constraint graph

Suppose a graph of n variables can be broken into subproblems of only c variables:
- Worst-case solution cost is $O((n/c)(d^c))$, linear in n
- E.g., $n = 80$, $d = 2$, $c = 20$
- $2^{80} = 4$ billion years at 10 million nodes/sec
- $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
- Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward: For $i = n : 2$, apply $\text{RemoveInconsistent}(\text{Parent}(X_i), X_i)$
 - Assign forward: For $i = 1 : n$, assign X_i consistently with $\text{Parent}(X_i)$
 - Runtime: $O(n \ d^2)$ (why?)
Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
 - Proof: Each X\(\rightarrow\)Y was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 - Proof: Induction on position

- Why doesn’t this algorithm work with cycles in the constraint graph?

- Note: we’ll see this basic idea again with Bayes’ nets
Improving Structure
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O(d^c (n-c) d^2)$, very fast for small c
Cutset Conditioning

- Choose a cutset
- Instantiate the cutset (all possible ways)
- Compute residual CSP for each assignment
- Solve the residual CSPs (tree structured)

\[O(\text{finding minimal cutset})? \quad \text{NP-hard} \]
Find the smallest cutset for the graph below.
Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

\[
\begin{align*}
(M1, M2) &\in \{(WA=g, SA=g, NT=g), (NT=b, SA=r, Q=g), \ldots\} \\
(M2, M3) &\in \{(NT=r, SA=g, Q=b), (NT=b, SA=g, Q=r), \ldots\} \\
(M3, M4) &\in \{((WA=g, SA=g, NT=g), (NT=g, SA=g, Q=g)), \ldots\}
\end{align*}
\]
Iterative Improvement
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned.

- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) =$ number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[
R = \frac{\text{number of constraints}}{\text{number of variables}}
\]
CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
- Ordering
- Filtering
- Structure

Iterative min-conflicts is often effective in practice