
Scalability of web applications

CSCI 470: Web Science • Keith Vertanen

Overview
• Scalability questions

– What's important in order to build scalable web sites?

• High availability vs. load balancing

• Approaches to scaling

– Performance tuning, horizontal scaling, vertical scaling

• Multiple web servers

– DNS based sharing, hardware/software load balancing

• State management

• Database scaling

– Replication

– Splitting things up

2

Scalability related questions
• Where is your session state being stored? Why?

• How are you generating dynamic content? Why?

• Are you regenerating things that could be cached?

• What is being stored in the database? Why?

• Could you be lazier?

– Do you need exact answers?
• e.g. “page 1/2063” versus “page 1 of many”

– Queue up work if it doesn't need to be done right now
• e.g. Does user really need a video thumbnail right away?

• What do you care about?

– Time to market, money, user experience, uptime, power
efficiency, bug density, …

3

High availability / load balancing
• High availability

– Stay up despite failure of components

– May involve load-balancing, but not necessarily
• Hot standby = switched to automatically if primary fails

• Warm standby = switched to by engineer if primary fails

– Easy component updates
• e.g. Avoid maintenance windows in the middle of the night

• Load balancing

– Combining resources from multiple systems

– Send request to somebody else if a certain system fails

– May provide high availability, but not necessarily
• e.g. Adding a single-point of failure load balancing appliance

4

Availability 9s

5

Availability % Downtime per year

90% "one nine" 36.5 days

99% "two nines" 3.65 days

99.9% "three nines" 8.76 hours

99.99% "four nines" 52.56 minutes

99.999% "five nines"
 "carrier grade"

5.25 minutes

99.9999% "six nines" 31.5 seconds

99.99999% "seven nines" 3.15 seconds

https://www.digitalocean.com/features/reliability/

https://www.digitalocean.com/features/reliability/
https://www.digitalocean.com/features/reliability/

Approaches to scaling
• Make existing infrastructure go further

– Classic performance tuning :
• Find the bottleneck

• Make faster (if you can)

• Find the new bottleneck, iterate

– How are you generating dynamic content? Why?

– Where is your session state being stored? Why?

– What is being stored in the database? Why?

– Can you be lazier?
• Do you need exact answers?

– e.g. “page 1/2063” versus “page 1 of many”

• Add work to a queue if it doesn't need to be done right now
– e.g. Does user really need a video thumbnail right away?

6

Approaches to scaling
• Vertical scaling (scale up)

– Buy more memory, faster CPU, more cores, SSD disks

– A quick fix: uses existing software/network architecture

– But there are performance limits
• Also a price premium for high end kit

7

ABMX server, 1u
1 core @3.1 Ghz, 1GB memory, 80GB disk
$397

Oracle Exadata X2-8, 42u
160 cores @ 2.4Ghz, 4TB memory

14 storage servers, 168 cores, 336TB
1.5M database I/O ops/sec

$1,650,000

. . .

Approaches to scaling
• Horizontal scaling (scale out)

– Buy more servers

– Well understood for many parts
• Application servers (e.g. web servers)

• But may require software and/or network changes

– Not so easy for other parts
• Databases

8

http://www.flickr.com/photos/intelfreepress/6722296265/

http://www.flickr.com/photos/intelfreepress/6722296265/

One web site: many servers
• How does the user arrive at a particular server?

– Does the session need to “stick” to same web server?
• Very important depending on how app manages state

• e.g. using PHP file-based session state

– What happens if a web server crashes?

– Users would prefer a geographically nearby server

9

Web 1 Web 2 Web 3

Browser A Browser B

DB

Round robin DNS
• Round robin DNS

– Multiple IP addresses assigned to a single domain name

– Client's networking stack chooses which to connect to

10

DB

Web 1
157.166.226.25

Web 2
157.166.226.26

Web 3
157.166.255.18

Browser A Browser B

Round robin DNS
• Round robin DNS

– Simple and cheap to implement
• No specialized hardware, using existing DNS infrastructure

– Problems:
• DNS has no visibility into server load or availability

• In simplest configuration, each web server requires an IP address

• Users may end up being sent to a distant server with high latency

11

Web 1
157.166.226.25

Web 2
157.166.226.26

Web 3
157.166.255.18

Browser A Browser B

DB

Anycast + DNS
• Goal: Get users to the "closest" server

• Anycast = multiple servers with same IP address

– Routing protocols determine best route to shared IP

– Best suited for connectionless protocols
• e.g. UDP

12

Anycast + DNS
• Multiple clusters

– Place a DNS server next to each web cluster
• Each DNS server has same IP address via IP Anycast

• A particular DNS server gives out IPs in its local cluster

– Anycast routes client to closest DNS server
• DNS servers routes client to "closest" server farm

13

Web 1
157.166.226.25

Web 2
157.166.226.26

Web 3
157.166.255.18

Browser A Browser B

DB

DNS 1
157.166.226.1

DNS 2
157.166.226.1

DNS 3
157.166.226.1

Load balancers
• Load balancers (web switches)

– Hardware or software (e.g. mod_proxy_balancer, Varnish)

– Like a NAT device in reverse
• People hit a single public IP to get to multiple private IP addresses

– Introduces a new single point of failure
• But we can introduce a backup balancer

• Load balancers monitor each other via a heartbeat

– How to distribute load?
• Round robin, least connections, predictive, available resources,

random, weighted random

14

15

Internet

router router

switch switch

web switch web switch

switch switch

www 1 www 2

Load balanced, no single point of failure

Load balancer, some features
• Session persistence

– Getting user back to same server (e.g. via cookie/client IP)

• Asymmetric load

– Some servers can take more load than others

• SSL offload

– Load balancer terminates the SSL connection

• HTTP compression

– Reduce bandwidth using gzip compression on traffic

• Caching content

• Intrusion/DDoS protection

16

Software load balancer
• Apache server running mod_proxy_balancer

– One server answers user requests

– Distributes to two or more other servers

17

<Proxy balancer://mycluster>
 BalancerMember http://192.168.1.50:80
 BalancerMember http://192.168.1.51:80
</Proxy>
ProxyPass /test balancer://mycluster

Header add Set-Cookie
"ROUTEID=.%{BALANCER_WORKER_ROUTE}e; path=/"
env=BALANCER_ROUTE_CHANGED
<Proxy balancer://mycluster>
 BalancerMember http://192.168.1.50:80 route=1
 BalancerMember http://192.168.1.51:80 route=2
 ProxySet stickysession=ROUTEID
</Proxy>
ProxyPass /test balancer://mycluster

Example configuration with sticky sessions.

Example configuration without sticky sessions.

State management
• HTTP is stateless, but user interactions often stateful

• Store session state somewhere:

– Local to web server

– Centralized across servers

– Stored in the client

– Or some combination
• Centralized but cached at closer level(s)

18

Local sessions
• Stored on disk

– PHP temp file somewhere

• Stored in memory

– Faster

– PHP:
• Compile with --with-mm

• session.save_handler=mm in php.ini

• Problems:

– User can't move between servers
• Load balancer must always send user to same physical server

– User's session won't survive a server failure
• Switching to new server results in loss of client's state

19

Centralized sessions
• User can move freely between servers

– But always need to pull info from central store

• Web servers can crash

– User gets routed to another web server

• Approaches

– Shared file system

– Store in a database

– Store in an in-memory cache
• e.g. Memcached

20

No sessions
• Put all information in the cookie

• Ultimate in horizontal scalability

– Browser "nodes" scale with your users

– Free!

• Concerns:

– User may delete cookie

– User may modify cookie
• But you can encrypt and digitally sign

– Limits on amount of data

– Local to the browser, user may use multiple browsers

21

Database scaling
• Scaling databases is hard

– Distribute among many servers to maintain performance

– DB must obey ACID principles:
• Atomicity - transactions are all or none

• Consistency - transactions go from one valid state to another

• Isolation - no transaction can interfere with another one

• Durability - on failure, information must be accurate up to the last
committed transaction

– ACID isn't too hard/expensive on a single machine:
• Using: shared memory, interthread/interprocess synch, shared file

system

• Facilities are fast and reliable

– Distribute over a LAN or WAN, big performance problems!

22

Database replication
• Multimaster replication

– The “holy grail” of distributed databases

– Group of DBs, updates can occur on any DB

– BUT: doing this without loosening ACID, very expensive
• Two-phase commit between all the nodes

– Node attempting transaction notifies peers it is about to commit

– Peer prepare transaction and notify node they are ready to commit

– If everybody ready, node informs peers to commit

• Master-master replication

– For high-availability, not scalability

– Two servers connected via a low latency network

• Master-slave replication

– Mods only occur on master, changes propagate to slaves

– Can offer read-intensive applications linear speedups
23

Database example

24

Core
DB

Core
DB

Master-master

Slave
DB Slave

DB

Remote cluster 1

Content web
app

Content web
app

Content web
app

Slave
DB Slave

DB

Remote cluster 1

Content web
app

Content web
app

Content web
app

Core web app Core web app
Core web app

Other database options
• Horizontal partitioning

– Separate rows into separate tables

– Spreads read/writes, improves cache locality

• Vertical partitioning

– Split rows into multiple tables with fewer columns

– Allows queries to scan less data
• Unless you end up needing to do a join across tables

• Sharding

– Separate rows onto separate databases
• e.g. All customers west of the Mississippi

– Must determine which shard customer belongs to

– Trouble for queries/transactions involving multiple shards

25

Summary
• Scaling web sites

– High availability != load balancing

– Scale vertically

– Scale horizontally
• More application servers

• Balanced via DNS/hardware/software

• Session management becomes harder

– The database is usually the big problem

26

