
CSCI 470: Web Science • Keith Vertanen

Ruby on Rails

Overview

• Ruby programming language

– History and philosophy

– Features

– Syntax

• Ruby on Rails

– History and philosophy

– Rails architecture

– Directory structure

 2

Ruby: History & philosophy

• History

– 1993, Yukihiro Matsumoto

– General purpose language

• Best known for web programming

3

"Often people, especially computer engineers, focus on the machines. They
think, 'By doing this, the machine will run faster. By doing this, the machine
will run more effectively. By doing this, the machine will something something
something.' They are focusing on machines. But in fact we need to focus on
humans, on how humans care about doing programming or operating the
application of the machines. We are the masters. They are the slaves."

–Yukihiro Matsumoto

"I was talking with my colleague about the possibility of an object-oriented scripting language. I
knew Perl (Perl4, not Perl5), but I didn't like it really, because it had the smell of a toy language (it
still has). The object-oriented language seemed very promising. I knew Python then. But I didn't like
it, because I didn't think it was a true object-oriented language — OO features appeared to be add-
on to the language. As a language maniac and OO fan for 15 years, I really wanted a genuine object-
oriented, easy-to-use scripting language. I looked for but couldn't find one. So I decided to make it."

–Yukihiro Matsumoto

Ruby: features

• Interpreted: Matz's Ruby Interpreter (MRI)

– 1.9+, Yet Another Ruby Virtual Machine (YARV)

• Automatically compiles to byte-code, no separate tool

• Also other byte-code compilers, e.g. Rubinius

• Dynamic and strongly typed

– Var type determined at runtime, type can change

• But strict about what you can do with types

 Perl: print "5" + 3 → 8

 Javascript: alert("5" + 3) → "53"

 Ruby: puts "5" + 3 → runtime error

 puts "5".to_i + 3 → 8

– Uppercase variable name = constant

 4

Ruby: features

• Object-oriented

– Everything is an object

– Single inheritance

• But mixins allow shared methods

– Duck typing: if it walks like a duck, talks like a
duck, then treat it like a duck

• Everything is an expression

• RubyGems

– Gem provides a library or plug-in

– Package manager like apt-get

– "There's a gem for that"

5

199.abs
5.times { print "Hello world! " }

def plus_one_to_y(x)
 @y = x + 1
 # puts "blah"
end

puts plus_one_to_y(10)
puts @y

-

Collections

a = [1, 'hi', 3.14, 1, 2, [4, 5]]

a[2] # => 3.14
a.[](2) # => 3.14
a.reverse # => [[4, 5], 2, 1, 3.14, 'hi', 1]
a.flatten.uniq # => [1, 'hi', 3.14, 2, 4, 5]

hash = { :water => 'wet', :fire => 'hot' } puts hash[:fire] #
prints "hot"

hash.each_pair do |key, value| # or: hash.each do |key, value|
 puts "#{key} is #{value}"
end
returns {:water=>"wet", :fire=>"hot"} and prints:
water is wet
fire is hot

deletes the pair :water => 'wet' and returns "wet" hash.delete
:water

deletes the pair :fire => 'hot' and returns {}

hash.delete_if {|key,value| value == 'hot'}

Classes, constructors, instance vars
class Sample
 def hello
 puts "Hello Ruby!"
 end
end

object = Sample. new
object.hello

class Person
 def initialize name
 @name = name
 end

def get_name
 @name
 end
end

person = Person.new "Jane"
puts person.get_name

Getters and setters
class Person

 attr_reader :name # Create getter
 attr_accessor :age # Create getter and setter

 def initialize(name, age)
 @name, @age = name, age
 end

 def to_s
 "#{name} (#{age})"
 end

end

bob = Person.new("Bob", 33)

puts(bob.name) # Prints "Bob"
puts(bob.age) # Prints 33
bob.age = 30 # Changes age to 30
bob.name = "Alice" # Runtime exception

OOP: inheritance

class Being
 @@count = 0

 def initialize
 @@count += 1
 end

 def show_count
 "There are #{@@count} beings"
 end
end

class Animal < Being
 def initialize
 super
 puts "Animal is created"
 end
end

class Dog < Animal
 def initialize
 super
 puts "Dog is created"
 end
end

Duck typing
class Duck
 def quack
 'Quack!'
 end

 def swim
 'Paddle paddle paddle...'
 end
end

class Goose
 def honk
 'Honk!'
 end
 def swim
 'Splash splash splash...'
 end
end

def make_it_swim(duck)
 duck.swim
end

puts make_it_swim(Duck.new)
puts make_it_swim(Goose.new)

Modules and mixins

module A
 def a1
 puts "a1 is the best!"
 end
end

module B
 def b1
 puts "seriously, what about me: b1?!?"
 end
end

class Sample
 include A
 include B
 def s1
 puts "s1 is king of the hill!"
 end
end

samp = Sample.new
samp.a1
samp.b1
samp.s1

Ruby on Rails

• History

– 2005, David Heinemeier Hansson

• Working on Basecamp project management tool

• Extracted Rails from the project

• Philosophy:

– Convention over configuration

– Don't Repeat Yourself (DRY)

– Rails is opinionated

• Makes assumptions about the "best" way to do things

• Designed to encourage you to do it that way

12

Rails architecture

• Model View Controller

– Model

• Article class: a blog entry

• Table articles in a database

• Ruby file: app/models/article.rb

– View

• Handles presentation to the user

• Template: app/views/articles/show.html.erb

• The controller's minions

– Controller

• Parses user requests, queries/updates models

• Ruby file: app/controllers/articles_controller.rb

13

http://betterexplained.com/articles/intermediate-rails-
understanding-models-views-and-controllers/

http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

14

Getting started: Rails tutorial

http://railsforzombies.org/

http://railsforzombies.org/

Ruby on Rails

• Ruby: the programming language

– Object-oriented scripting language

– Dynamic and strongly typed

– Strong developer community

– "There's a gem for that"

• Ruby on Rails: web framework

– Convention over configuration

– Don't Repeat Yourself (DRY)

– Model-View-Controller design pattern

15

