Modern cryptography

Overview

- Modern cryptography
- Symmetric cryptography
- DES
- 3DES
- AES
- Asymmetric cryptography
- Diffie-Hellman key exchange

Modern cryptography

- Moving into computer age
- Not limited to physical engineering constraints
- 100's of rotors instead of 3, changing in complex ways
- Much faster
- Scrambling at the bit level
- Symmetric encryption (what we've seen thus far)
- Encrypting message M with key $K: \quad E_{k}(M)=C$
- Decrypting ciphertext C with key K : $\quad D_{K}(C)=M$
- $D_{K}\left(E_{K}(M)\right)=M$
- Stream cipher: operates one bit/byte at-a-time
- Block cipher: operates on a group of bits/bytes

Bit encryption / decryption example

Message

Sender
Binary
KEY = DAVID : 10001001000001101011010010011000100
Encrypted (XOR) : 00011000000100001101000001010001011

Receiver
Encrypted : 00011000000100001101000001010001011
KEY = DAVID : 10001001000001101011010010011000100
Decrypted (XOR) : 10010001000101100110010011001001111

DES

- Data Encryption Standard (DES)
- NIST wanted a government standard
- Based on IBM's Lucifer cipher
- 16 round Feistel network
- Security provided by a key
- With "cooperation" from NSA:
- Improved S-boxes
- Reduced key length to 56 bits
- 1976 approved as a standard
- Same hardware/software can encrypt/decrypt
"DES did more to galvanize the field of cryptanalysis than anything else. Now there was an algorithm to study: one that the NSA said was secure"

S_{5}																
	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
Oyyyy0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
Oyyyy1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
1yyyy0	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
19yyy 1	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

S-box \#5, 6 bits -> 4 bits, e.g. 011011 -> 1001 (9)

The Feistel function (F-function)

P-box, straight permutation, 32 bits -> 32 bits

Breaking DES

- Key size, 72 quadrillion
$-2^{56}=72,057,594,037,927,936$
- DES Challenges (brute force)

- Sponsored by RSA Security
- Challenge I: 96 days, Internet users
- Challenge II: 41 days, distributed.net
- Challenge II-2: 56 hours, EFF deep crack
- \$250,000 to develop, \$10,000 prize

- 90 billion keys/second
- Challenge III: 22 hours, EFF+distributed.net
- 2008, FPGA, 1 day

Stronger symmetric schemes

- Triple DES (3DES)
- Ciphertext: $\quad \mathrm{E}_{\mathrm{K} 3}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\right.\right.$ plaintext $\left.\left.)\right)\right)$
- Plaintext: $\quad \mathrm{D}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{D}_{\mathrm{K} 3}(\right.\right.$ ciphertext $\left.\left.)\right)\right)$
- Keying option 1: K1 $\neq \mathrm{K} 2 \neq \mathrm{K} 3$
- 168 bits $=56$ bits $\times 3$
- Advantages:
- Uses DES, most analyzed encryption algorithm
- No known effective attack (besides brute force)
- Disadvantages:
- Slow in software, DES designed for 1970's hardware
- Small block size of 64-bits

AES

- Advanced Encryption Standard (AES)
- 2001 new NIST standard, Rijndael
- Symmetric block cipher
- Key lengths of 128, 192, and 256 bits
- Approved by NSA for top secret information

Attack types

- Ciphertext only
- Ciphertext of message(s), plaintext unknown
- Known plaintext
- Ciphertext plus corresponding plaintext
- Chosen plaintext
- Ciphertext plus plaintext of your own choosing
- Adaptive chosen plaintext
- Modify plaintext based on previous decryptions
- Rubber hose

Key exchange

- Thus far: symmetric encryption
- Alice and Bob need to have shared secret
- But how do you distribute?
- Doesn't scale

Diffie-Hellman

- Diffie-Hellman (DH) key exchange
- 1976, Whitfield Diffie \& Martin Hellman
- Alice and Bob agree on a private secret:
- On a public channel
- Where Eve hears all the traffic
- Only Alice and Bob end up knowing the secret
- Relies on one-way function
- Function must be easy to do, but difficult to undo

[^0]IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976
New Directions in Cryptography
Invited Paper
WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Whitfield Diffie

Martin Hellman

Public key cryptography

- Diffie-Helman key exchange
- Both parties had to be around to negotiate secret
- Symmetric encryption
- Encrypting message M with key K : $\quad E_{k}(M)=C$
- Decrypting ciphertext C with key $K: \quad D_{K}(C)=M$
- Asymmetric encryption
- 1975, Diffie conceives of idea
- Users have a private key and a public key
- Alice encrypts plaintext with Bob's public key
- Only Bob can (tractably) decrypt using his private key
- Special one-way function
- Hard to reverse unless you know something special

Summary

- Modern cryptography
- Computer-based symmetric ciphers
- DES, 3DES, AES
- Rise of asymmetric cryptography
- Diffie-Hellman

[^0]: 644

 Abstract-Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways th solv hersens how provide the tools to solve cryptographic problems of long stand ing.

