Historical cryptography
ab c defghiklmno.p qr stay z

Nulls ff.-. - d.
Dowbleth σ
and for with that if but where as of the from by

so not when there this in wish is what say me my wert
 send le receave bearer I pray you Mite your name mane

Overview

- Historical cryptography
- Monoalphabetic substitution ciphers
- Breaking them
- Some improvements
- The cipher of Mary Queen of Scots
- Polyalphabetic substitution ciphers
- Unbreakable encryption

Monoalphabetic ciphers

- Monoalphabetic cipher
- Use a fixed substitution over entire message
- Assigning substitutions
- Option 1: Caesar shift cipher
- Option 2: Completely random
- 26! ways to assign \approx 400,000,000,000,000,000,000,000,000
- But hard to remember a completely random assignment
- Option 3: Based on key phrase
- Shared secret: "ugly black swan"

Monoalphabetic ciphers

- Dominated secret writing
- Codemakers had a seemingly unbreakable code
- No need for further innovation
- At least for most of the first millennium AD
- Breaking monoalphabetic ciphers
- Key idea: frequency analysis
- Arabs ~800 AD
- Easiest on long texts

Breaking a monoalphabetic cipher

On Deciphering Cryptographic Messages by Abu Yusuf Ya'qūb ibn Isḥāq al-Sabbah al-Kindī
"One way to solve an encrypted message, if we know its language, is to find a different plaintext of the same language long enough to fill one sheet or so, and then we count the occurrences of each letter. We call the most frequently occurring letter the 'first', the next most occurring letter the 'second' the following most occurring letter the 'third', and so on, until we account for all the different letters in the plaintext sample.

Then we look at the cipher text we want to solve and we also classify its symbols. We find the most occurring symbol and change it to the form of the 'first' letter of the plaintext sample, the next most common symbol is changed to the form of the 'second' letter, and the following most common symbol is changed to the form of the 'third' letter, and so on, until we account for all symbols of the cryptogram we want to solve."

Breaking a monoalphabetic cipher

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIX PIJVSZEYPERRGERIMWQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITRE WHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIWXMJ MGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXVI ZMXFSJXLIK EGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRR FQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIV FVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZ INTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX

Ciphertext (spaces removed)

Breaking a monoalphabetic cipher: step 1

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIX PIJVSZEYPERRGERIMWQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITRE WHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIWXMJ MGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXVI ZMXFSJXLIK EGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRR FQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIV FVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZ INTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX

ciphertext	plaintext	
I	e	most common letter
XL	th	most common bigram
XLI	the	most common trigram
E	a	second most common letter

Letter distribution in English.

Breaking a monoalphabetic cipher: step 1

ciphertext	plaintext		
I	e	most common letter	
XL	th	most common bigram	
XLI	the	most common trigram	
E	a	second most common letter	

> heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZetheKeet PeJVSZaYPaRRGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRa WHatthattMZeTWAWSQWtSWatTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJ MGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtVeZMtFSJtheK aGAaWHaPSWYSWeWeaVtheStheVtheRGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRR FQMthaPPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeV FVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZ eNTCMteVJSVhMRSCMWMSWVeRCeGtMWYMt

Letter distribution in English.

Breaking a monoalphabetic cipher: step 2

heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZetheKeet PeJVSZaYPaRRGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRa WHatthattMZeTWAWSQWtSWatTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJ MGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtVeZMtFSJtheK aGAaWHaPSWYSWeWeaVtheStheVtheRGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRR FQMthaPPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeV FVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZ eNTCMteVJSVhMRSCMWMSWVeRCeGtMWYMt

ciphertext	plaintext	cipher fragment	plaintext guess
V	r	heVe	here
R	S	Rtate	state
M	i	atthattMZe	atthattime
Z	m	atthattMZe	atthattime

Breaking a monoalphabetic cipher

Abstract

hereTCSWPeYraWHarSseQithaYraOeaWHstatePFairaWHKrSTYhtmetheKeet PeJrSmaYPassGaseiWQhiGhitQaseWGPSseHitQasaKeaTtiJTPsGaraKaeTsa WHatthattimeTWAWSQWtSWatTraPistsSJGSTrseaYreatCriUeiWasGieWtiJ iGCSiWtSJOieQthereQeretQSrSTWHKPaGAsCStsWearSWeeBtremitFSJtheK aGAaWHaPSWYSWeWeartheStherthesGaPesQereeBGeeHiWYPFharHaWHYPSss FQithaPPtheaCCearaWGeSJKTrWisheHYSPHtheQeiYhtSJtheiWseGtQasOer FremarAaKPeaWHtaAiWYaPPthiWYsiWtSGSWsiHeratiSWiGSTPHharHPFKPam eNTCiterJSrhisSCiWiSWresCeGtiWYit

and so on...

Decoded monoalphabetic cipher

Abstract

hereuponlegrandarosewithagraveandstatelyairandbroughtmethebeet lefromaglasscaseinwhichitwasencloseditwasabeautifulscarabaeusa ndatthattimeunknowntonaturalistsofcourseagreatprizeinascientif icpointofviewthereweretworoundblackspotsnearoneextremityoftheb ackandalongoneneartheotherthescaleswereexceedinglyhardandgloss ywithalltheappearanceofburnishedgoldtheweightoftheinsectwasver yremarkableandtakingallthingsintoconsiderationicouldhardlyblam ejupiterforhisopinionrespectingit


```
Hereupon Legrand arose, with a grave and stately air, and
brought me the beetle from a glass case in which it was
enclosed. It was a beautiful scarabaeus, and, at that time,
unknown to naturalists-of course a great prize in a scientific
point of view. There were two round black spots near one
extremity of the back, and a long one near the other. The
scales were exceedingly hard and glossy, with all the
appearance of burnished gold. The weight of the insect was very
remarkable, and, taking all things into consideration, I could
hardly blame Jupiter for his opinion respecting it.
```

The Gold Bug by Edgar Allan Poe.

Or use some code from the Internet...

```
c:\Dropbox\mtech\websci\resources>simpsub2.exe
Name of sample ("learning") file: moby.txt
Name of cipher file: mono2.txt
Is the cipher formatted with spaces? (y/n): n
Reading sample file...
Analyzing sample file...
Reading cipher file...
Analyzing cipher file...
Initial closeness is 1.487429, PLEASE WAIT...
DONE! Func value=0.866612
Key is: abcdefghijklmnopqrstuvwxyz
    ekghijylmdapzwscnvrxtoqbfu
hereuponlegrandarosewithagraveandstatelyairandbroughtmethebeetle fromaglasscaseinwhichitwasencloseditwasabeautifulscarabaeusandat thattimeunknowntonaturalistsofcourseagreatprizeinascientificpoin tofviewthereweretworoundblackspotsnearoneextremityofthebackandal ongoneneartheotherthescaleswereexceedinglyhardandglossywithallth eappearanceofburnishedgoldtheweightoftheinsectwasveryremarkablea ndtakingallthingsintoconsiderationicouldhardlyblamequpiterforhis opinionrespectingit
```


Or develop your own program...

```
Algorithm 1: SOLVER(puzzle,num_trials,num_swaps, scoringFunction)
input : substitution cipher puzzle, parameters num_trials and num_swaps control-
    ling the amount of computation, and scoring function scoringFunction
output : best decryption key found best_key and its corresponding score best_score, lo-
    cally maximizing the scoring function
best_score \(\leftarrow-\infty\)
for \(i \leftarrow 1\) to num trials do
    key \(\leftarrow\) random permutation of the alphabet
    best_trial_score \(\leftarrow-\infty\)
    for \(j \leftarrow 1\) to num_swaps do
        new_key \(\leftarrow k e y\) with two of its letters swapped randomly
        score \(\leftarrow\) score puzzle using scoringFunction after decrypting it with new_key
        if score \(>\) best_trial_score then
            \(k e y \leftarrow n e w \_k e y\)
            best_trial_score \(\leftarrow\) score
        endif
    end
    if best_trial_score \(>\) best_score then
        best_key \(\leftarrow\) key
        best_score \(\leftarrow\) best_trial_score
    endif
end
return \{best_key, best_score\}
Algorithm from "Solving Substitution Ciphers" by Sam Hasinoff
```


Shoring up monoalphabetic ciphers

- Improved resistance to frequency analysis:
- Insert nulls, symbols that represent nothing
- e.g. cipher alphabet 1-99, 73 numbers represent nulls
- Mespall thangs on pirpus
- Screws up frequency, humans can correct
- Use code words
- Need to exchange large dictionary of codes
- Capture of codebook destroys security
- Nomenclature
- Small list of words or syllables
- Cipher alphabet with homophones
- Homophonic substitution
- Multiple cipher symbols per plaintext symbol

Homophonic substitution

- Improved resistance to frequency analysis:
- Homophonic substitution
- For each plaintext symbol, set of cipher symbols
- Set size proportional to frequency in the language

a	b	C	d	e	f	g	h	i	j	k	I	m	n	0	p	q	r	S	t	U	V	W	X	Y	Z
09	48	13	01	14	10	06	23	32	15	04	26	22	18	00	38	94	29	11	17	08	34	60	28	21	02
12	81	41	03	16	31	25	39	70			37	27	58	05	95		35	19	20	61		89		52	
33		62	45	24			50	73			51		59	07			40	36	30	63					
47			79	44			56	83			84		66	54			42	76	43						
53				46			65	88					71	72			77	86	49						
67				55			68	93					91	90			80	96	69						
78				57										99					75						
92				64															85						
				74															97						
				82																					
				87																					
				98																					

Mary Queen of Scots

- Babington Plot
- Mary imprisoned for 18 years
- Gilbert Gifford: double agent
- "recruited" to communicate with Mary
- Detoured letters via Walsingham
- Anthony Babington and company
- Rescue Mary
- Assassinate Elizabeth
- Wanted blessing of Mary

Elizabeth I

Mary's nomenclature
ab c defghiklmno.p qr st u x y z $0 \ddagger 1+a=\theta \infty 1$ in $\| \phi \nabla s m \nmid \Delta \varepsilon \subset 789$

Nulles f4.-.-.d. Dowbleth σ
and for with that if but where as of the from by

so not when there this in wish is what say me my wert $t x H H \quad b \quad x \quad \frac{b}{\sigma} \quad 6 \quad M \quad 1 \quad M M \quad 0$ send le receave bearer I pray you Mite your name tyne

The plot

- Babington plot
- Gifford delivers message from Mary to Babington
- Babington replies with outline of plot:
"Myself with ten gentlemen and a hundred of our followers will undertake the delivery of your royal person from the hands of your enemies. For the dispatch of the usurper, from the obedience of whom we are by the excommunication of her made free, there be six noble gentlemen, all my private friends, who for the zeal they bear to the Catholic cause and your Majesty's service will undertake that tragical execution"
- Mary replies endorsing plan
- Walsingham forges postscript, asking to name names:
> "I would be glad to know the names and qualities of the six gentlemen which are to accomplish the designment; for it may be that I shall be able, upon knowledge of the parties, to give you some further advice necessary to be followed therein, as also from time to time particularly how you proceed: and as soon as you may, the for the sample purpose, who be already, and how far everyone is privy hereunto."

Polyalphabetic cipher

- Monoalphabetic cipher
- Single set of substitutions for all letters

a	b	c	d	e	f	g	h	i	j	k	I	m	n	o	p	q	r	s	t	u	v	w	x	y	z
U	G	L	Y	B	A	C	K	S	W	N	D	E	F	H	I	J	M	O	P	Q	R	T	V	X	Z

- Polyalphabetic cipher
- Multiple sets of substitutions
- Switch between them during encryption
- 1460s, Leon Alberti hits on idea of using $2+$ sets

| a | b | c | d | e | f | g | h | i | j | k | I | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| :---: |
| U | G | L | Y | B | A | C | K | S | W | N | D | E | F | H | I | J | M | O | P | Q | R | T | V | X | Z |
| T | H | E | Q | U | I | C | K | B | R | O | W | N | F | X | J | M | P | S | V | L | A | Z | Y | D | G |

Polyalphabetic cipher

- 1586, Vigenère cipher, "Le Chiffre Indéchiffrable"
- Letters Caesar shifted, change based on keyword

		A B	B C		D													Q								
	A	A B	B	C		F		G H	,		,	L	L M	M N		0	P	Q	R	S T						
	B	C		D E	E F		G H	H 1		K	K					P	Q	R	S				X	Y	Z	
	C	D	E	E F	F G	H	H		K	L						Q	R	S	T U	U			Y	Z	A	
	D	E	F	F G	G	H		K	L	-						R			U				Z	A	B	
	E	F		G H	H		J K	L	- M	M						S	T	U	V				A	B	C	
	F	G	G H	H	1 J	K	K	-	M							T	U		W				B	C	D	
G	G	H	H I	1 J	J K	L	L M	M	N 0							U		W					C	D	E	
H	H			J K	K		M N										W						D	E	F	
	1			,	L M		N 0	P															E	F	G	
		K	K	L M	M N		0 P		Q										A				F	G		
K	K	L	L M	M N	N O		P Q	Q											B				G	H		
	L	M	N	N	0		Q R	R S								Z	A		C				H	1	J	
	M	N	0	0	P	Q R	R S	T	T U	U						A	B	C	D			H		J	K	
N	N	O	0 P	P Q	Q R											B	C	D	E F				J	K	L	
0	0	P	Q	Q R	R S											C	D	E	F	G			K	L	M	
	P	Q	Q R	R S	S											D	E		G H			K	L	M	N	
	Q	R	R S	S T	T U											E	F	G	H		J K	L	M	N	0	
	R	S	T	T U	U											F	G	H			K L	M	N	O	P	
	S	T	T U	U V	\checkmark W											G	H		$J \mathrm{~K}$				0	P	Q	
	T	U	J	V W	W											H			K L			NO	P	Q	R	
	U			W													J						Q	R	S	
																	K					Q	R	S	T	
	W			Y Z	Z											K	L				Q	Q	S			
			2	$Z A$	A B			E	E	G	G H	H		J K		L	M		O P		Q R	R				
			Z A	A B	B C		E	F	G	G	H	1	J K	L			N	0		Q	R S					

Blaise de Vigenère

Plaintext	attackatdawn
Key	LEMONLEMONLE
Ciphertext	LXFOPVEFRNHR

Breaking the Vigenère Cipher

- Vigenère cipher
- Much better at hiding letter frequency info
- But key repeats:
- If you know length, an interwoven set of Caeser ciphers

Key:	ABCDABCDABCDABCDABCDABCDABCD
Plaintext:	cryptoisshortforcryptography
Ciphertext:	cSASTPKVSIQUTGQUCSASTPIUAQJB

- Distance between repeats $=16$
- Suggests key length if 16, 8, 4, 2, or 1
- Find additional repeats to narrow lengths
- Frequency analyze each interwoven set

Long keys

- Polyalphabetic with |key| = |message|
- Babbage's method won't work

Key:	CAN???BSJ?????YPT????
Plaintext:	the???the?????the????
Ciphertext:	VHRMHEUZNFQDEZRWXFIDK
Key:	CAN?????????CRYPT????
Plaintext:	the?????????cithe????
Ciphertext:	VHRMHEUZNFQDEZRWXFIDK
Key:	CAN?????????EGYPT????
Plaintext:	the?????????atthe????
Ciphertext:	VHRMHEUZNFQDEZRWXFIDK
Key:	CANADABRAZILEGYPTCUBA
Plaintext:	themeetingisatthedock
Ciphertext:	VHRMHEUZNFQDEZRWXFIDK

Unbreakable encryption

- One-time pad, 1882
- Use a key as long as the message
- Choose key (truly) randomly
- Use key once and only once
- Provably secure

Breaking one-time pads?

- Try all possible keys
$-26^{\text {length }}=$ big
- Also: generates all possible text sequences

Some

Unbreakable encryption

- Problems with one-time pads:
- Must distribute pads securely
- If captured, code is useless
- Must use truly random numbers
- Not pseudo-random
- Not random typing on a keyboard
- Must never reuse the same key

"As a practical person, I've observed that one-time pads are theoretically unbreakable, but practically very weak. By contrast, conventional ciphers are theoretically breakable, but practically strong."
-Steve Bellovin

Summary

- History of cryptography
- Substitution ciphers
- Monoalphabetic
- Polyalphabetic
- One-time pads
- Provably unbreakable
- (if used carefully)

