TCP flow control and connection setup

Sender
Application
does a 2K
write

-—

Application
does a 2K —
write

Sender is
blocked

Sender may
send up to 2K —=

e P S
Ly EI_?_C_)__:_?_ 1
(KW=}

R ESE = N

Receiver Receiver's
buffer

=
.
-

Empty

Full

.I'\J
I x

Application
reads 2K

%]
-~

=]

|

H
s

OK
ESTAB

o~

Computer Networking: A Top Down Approach

6t edition

Jim Kurose, Keith Ross
Addison-Wesley

Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
— Segment structure
— Reliable data transfer
— Flow control

— Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

— Flow control

Receiver controls sender, so sender
won't overflow receiver's buffer by
transmitting too much, too fast

TCP flow control

applicatio
Application may rocess
remove data from
TCP socket buffers [|
r
TCP socket
receiver buffers
... Slower tha.n TC.P N
receiver is ——— ‘
.dellve_rmg TCP
(sender is sending) code
[] |
IP
code
il } -

I
I I :
from sender |

Receiver protocol stack

application

TCP flow control —ma——

Receiver advertises free
buffer space by including
rwnd value in TCP header

— RcvBuffer size set via
socket options (typical default
is 4096 bytes)

— Many operating systems
autoadjust RcvBuffer

Sender limits amount of
unACKed in-flight data to
receiver's rwnd value

Guarantees receive buffer
will not overflow

Source port # Dest port #

Sequence number

Acknowledgement number

not . .
used Receive window

Checksum Urg data pointer

Options (variable length)

Application
data
(variable length)

7o application process

NI

RcvBuffer buffered data

T

rwnd free buffer space

4

1

TCP segment payloads
Receiver-side buffering

Sender

Application
d'.']E'E a EH .
write

Application
does a2k —
write -

Senderis |
blocked

Sender may
send up to 2K —=

Receiver
T T s
L_____J!_.S_E—\I?_\-_:_Ei_l______
—{RGREZOSWIN= 20—
e =0
—— W=
- _ AR
) Al W ?‘_'!l = el
oKz
—
¥ 5 .
=205

Receiver's
buffer

0 4K
Empty

2K

Full

Application
reads 2K

2K

TCP sliding window

e Windows size =0
— Bytes up to an including ACK # - 1 have been received
— Receiver has not consumed data so don't send more

— When ready, receiver issues same ACK # and non-zero
window size

— Provides the flow-control in TCP

e Sender can still send:

— Urgent requests (e.g. kill the process)
— Periodic window probe frames, see if window has opened

* Prevents deadlock should the receiver's windows update get lost
* Persistence timer

http://media.pearsoncmg.com/aw/aw kurose network 4/applets/flow/FlowControl.htm

http://www.ccs-labs.org/teaching/rn/animations/flow/index.htm

http://media.pearsoncmg.com/aw/aw_kurose_network_4/applets/flow/FlowControl.htm
http://www.ccs-labs.org/teaching/rn/animations/flow/index.htm
http://www.ccs-labs.org/teaching/rn/animations/flow/index.htm
http://www.ccs-labs.org/teaching/rn/animations/flow/index.htm

Silly Window Syndrome

Server

Client
I = SHDWHD = 360
L Uszable = 360
SND.MXT =1
1. Send 360-Byte Segment
I = SHNDVVND = 360
SHD U#A 1 Usable =0
360
F
SND.NXT = 364

3. Reduce Send Window to 120;
Send 120-Byte Segment

SND.VWND = 120 =
Usable = 0 SHD.UNA = 3641

[380 120

F
SND.NXT = 481

3. Reduce Send Window to 80;
Send 80-Byte Segment

SHD.WHD = 20 _
S SHD.UNA = 481
|
| 360 | 120 Jao)
[|
SND.NXT = 561

Segment
Length=360

Seq Num=1x*

Acknow.fedgmen{__

Ack Num = 361

Window =120
Segment

Length=120

Seq Num=3&-1*

Acknow.redgmen{_,

Ack Num = 431

Window = 80
Segment

Length=80

Seq Hum=4ﬂ1*

Acknow.redgmen{_,
Ack Hum = 561
Window = 67

4"’/ :

RCV.WHD = 360

RCV.NXT =1

2. Receive Segment; Send Ack,
Reduce Window To 120

RCV.WHD =120

2400360

RCV.NXT = 361

4. Receive Segment; Send Ack,
Reduce Window To 80

RCV.WND = &0
-
-
RCV.HXT = 481

4. Receive Segment; Send Ack,
Reduce Window To 67

RCV.WWHND = 80
]
1
]

RCV.NXT = 561

http://www.tcpipguide.com/free/t TCPSillyWindowSyndromeandChangesTotheSlidingWindow.htm

http://www.tcpipguide.com/free/t_TCPSillyWindowSyndromeandChangesTotheSlidingWindow.htm

Nagle's Algorithm

e Sender-side silly window avoidance

* Application produces data to send
— |f >= MSS, send segment
— If no segments in flight, send the segment
— Otherwise queue the data

e Limits to one small segment in network
— But bad for interactive apps like gaming

— Especially bad if combined with delayed ACKs
* write byte, write byte, read byte

— Can be disabled, TCP_NODELAY option

Clark's solution

* Receiver-side silly window avoidance

Do not send window size update unless:
— |t can handle full MSS size
— Half of its buffer is empty

Limits in the TCP header

 Sequence number

— 32 bits longs

Receive window
— 16 bits long

— TCP has satisfied the requirement
of the sliding window algorithm
that the sequence number space
be twice as big as the window size

— 232>>2 x 216

32 bits

v

Source port # Dest port #

Sequence number

Acknowledgement number

not

used |Y1APIRISIF Receive window

Checksum Urg data pointer

Options (variable length)

Application
data
(variable length)

Protecting against wraparound

* Relevance of the 32-bit sequence number space
— Sequence number may wraparound
— A byte with sequence x could be sent, then later time a
second byte with the same sequence x could be sent
— Packets cannot survive in the Internet for longer than the
maximum segment lifetime: MSL = 120s
— Sequence number must not wrap around within MSL

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

Fast Ethernet (100 Mbps) | 6 minutes
OC-3 (155 Mbps) 4 minutes
0OC-12 (622 Mbps) 55 seconds

0C-48 (2.5 Gbps) 14 seconds

11

Keeping the pipe full

* 16-bit receive window must allow sender to keep the pipe full

* If the receiver has enough buffer space

— Window can be opened to allow a full delay X bandwidth product's

worth of data

Bandwidth

T1 (1.5 Mbps)

Ethernet (10 Mbps)

T3 (45 Mbps)

Fast Ethernet (100 Mbps)
0OC-3 (155 Mbps)

0C-12 (622 Mbps)
0C-48 (2.5 Ghps)

Delay x Bandwidth Product
18 KB

122 KB

549 KB

1.2 MB

1.8 MB

7.4 MB

29.6 MB

Required window size for 100 ms RTT

12

TCP extensions

* Timestamp option
— Timestamp added to segment by the sender
— Echoed by the receiver
— Sender can then compute RTT
— Also can be combined with sequence number

* Protects against wraparound

e Large window option

— Use a scale factor
— Left shift window size field by up to 14 bits
— Windows of up to 23° bytes

TCP extensions

* Selective acknowledgements (SACK)

— Optional header fields used to acknowledge additional
blocks

— Sender can then resubmit only missing blocks

 Maximum Segment Size (MSS)
— Only valid extension during connection setup
— Set a non-default value for maximum segment size

Connection management

Before exchanging data, sender/receiver handshake:

* Agree to establish connection
* Agree on connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client

rcvBuffer size
at server,client

q network
e |

Socket clientSocket =
newSocket("hostname", port);

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept();

15

Agreeing to establish a connection

2-way handshake:

g

ESTAB

o

g

choose x

ESTAB @

—
Let's talk

OK

ﬁ:q_conn(xk

acc_conn(x)

ah

b
L)

~—
/‘ ESTAB

—® ESTAB

Q: Will 2-way handshake
always work in a
network?

* Variable delays

* Retransmitted messages (e.g.

req_conn(x)) due to message
loss

* Message reordering
* One side can't see other side

16

Agreeing to establish a connection

2-way handshake failure scenarios:

2 B g

choose x choose x|~
\req_conn(xk‘ reg_conn(x)
/ ESTAB / ESTAB
retransmit acc_conn(x) retransmit acc_conn(x)
req_conn(x)’>< req_conn(x) P(_
ESTAB ESTAB @&
req_conn(x) data(x+1) accept
9 retransmit e data(x+1)
\ data(x+1) [N\
| _ connection | L. connection |
X :
terminates req_conn(x) orgets x
ESTAB ESTAB
data(x+1) accept
data(x+1)

Half open connection!
(no client)

17

TCP 3-way handshake

Client state :“ Vf E Server state
LISTEN . LISTEN
l Choose init seq num, x \

SYNSENT ~ Send TCPSYN msg SYNbit=1, Seq=x

Choose init seq num, y

/ Send TCP SYNACK SYN RCVD
SYNbit=1, Seq=y msg, acking SYN
ACKbit=1; ACKnum=x+1

v Received SYNACK(x) /

ESTAB indicates server is live;

Send ACK for SYNACK; ACKbit=1, ACKnum=y+1

This segment may contain T~ | Received ACK(y)
client-to-server data indicates client is live

v

ESTAB

18

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept();

A

SYN(x) Socket clientSocket =

newSocket("hostname", port);

SYNACK(seq=y, ACKnum=x+1)
create new socket for SYN(seg=x)
communication back to client

1 ‘,

‘ SYNACK(seq=y, ACKnum=x+1)

A

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

TCP: closing a connection

» Client, server each close their side of connection
= Send TCP segment with FIN bit=1

** Respond to received FIN with ACK
" On receiving FIN, ACK can be combined with own FIN

** Simultaneous FIN exchanges can be handled

20

CONHECT/! SYM (Step 1 of the 3-way-handshake)

eeeerneeeeeeoo e UAUSUE] BvERT
————= clientreceiver path [513]1]_ 50000 R A R R 0
CLOSEI-
— 3= server'sender path LISTEN/ j.
- CLOSE/-
(Step 2 of the 3-way-handshake)SYHMNISYMN+ACK LISTEN '
Y
RSTI- : : SEND/ =%
5‘-" et et e et e s e et E et R e e e }.. 5?"
RECEIVED | SYNISYN+ACK (simultaneous open) SENT
Data exchange occurs
ACHKI- SYN+ACKIACK
= (Step 3 of the 3-way-handshake)
- CLOSE/FIN
CLOSE/ FIM FINIACK

T S Active CLOSE Passive CLOSE :

E [}
: Y FINIACK : : |
I FNWAITL |30 o osING L CLOSE WAIT ;
: FIN+ACKIACK : L |
: 1 I :

] 1 I I
! ACK! i o CLOSE/ FIN ,
I : : 1 I :
: : : ! ! |
. 1

:] "f 1 : ' :
| FIN WAIT 2 ce = TIME WAIT L LAST ACK :
i FINJACK : :
| Timeout : : ACH- :
] 1 o |

(Go hack to start) _-E

TCP: closing a connection

Client state / V,f E Server state
T ESTAB

ESTAB
l clientSocket.close() — |
FIN_WAIT_1 Can no longer FINbit=1, seq=x
send but can M
receive data _— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 _
. Can still
FIN_WAIT_2 Wait for server |—"" send data
close
v
LAST _ACK
FINbit=1, seq=y
TIMED WAIT — Can no longer
- ~ ~— send data
ACKbit=1; ACKnum=y+1
Timed wait ~—— v
for 2*max CLOSE

segment lifetime

v J?
CLOSED

Connection: three-way handshake

CONNECT

Sends TCP segment to
(IP, port) with SYN bit
on, ACK bit off

LISTEN, ACCEPT
Passively waits for incoming
connection

Receives segment.

OS hands off to process that
has done LISTEN on port.

If process accepts, send TCP
with SYN and ACK bit set.

SYN (SEQ =

-—Time

Server has to remember it's
sequence number in step 2

23

SYN flooding

SYN flooding

— Denial-of-service attack

» Attacker sends large number of SYN
requests

* Never responds or spoofs source IP
address

— Server runs out of resources

» Server has to track assigned sequence
number

* Fills with half-open connections

&

?

=

SYN

W

SYN-ACK

SYN

/

24

SYN cookies

e Server generates sequence number
— Uses cryptographic hash function

— Combine counter, MSS requested, and secret generated
from client/server IP and ports

— Fires off response, forgetting number
— Recover original sequence number if client responds

Initiator Listener
SYN
http://cryp.to/syncookies.html Teh s srcadai ats
SYN-ACK plus Sequence Number and
http://nmap.org/nmap_doc.html cookie destroyed

ACK, returns
cookie
TCB is recovered from
acknowledged Sequence

Number in ACK segment
Normal Data Exchange

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj 9-4/syn_flooding_attacks.html

25

http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://nmap.org/nmap_doc.html
http://nmap.org/nmap_doc.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html

nmap versus Tokyo

$ nmap -v -A 106.187.54.31 -p 1-65535

Scanned at 2012-10-16 16:31:38 MDT for 1391s

Not shown: 65526 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 5.9p1 Debian 5ubuntul (protocol 2.90)

| ssh-hostkey: 1024 c5:ea:eb:88:a3:f1:d1:2d:5f:ed:63:c2:a8:54:bf:33 (DSA)

| 2048 d1:b3:75:95:ed:2a:13:90:27:89:1b:f4:f5:2b:b8:7c (RSA)

25/tcp filtered smtp

53/tcp filtered domain

67/tcp filtered dhcps

68/tcp filtered dhcpc

89/tcp open http Apache httpd 2.2.22 ((Ubuntu))

| http-methods: No Allow or Public header in OPTIONS response (status code 200)
| http-title: Site doesn't have a title (text/html).

1433/tcp filtered ms-sql-s

1434 /tcp filtered ms-sql-m

8080/tcp open http-proxy Squid http proxy 3.1.19

| http-methods: No Allow or Public header in OPTIONS response (status code 400)
Service Info: 0S: Linux; CPE: cpe:/o:linux:kernel

Final times for host: srtt: 188947 rttvar: 3251 to: 201951

sudo Isof -i:22 -n

Summary

* TCP flow control
— Each side informs other of available buffer space
— Other side never places more unACKed in-flight

* TCP connection setup
— Three-way handshake
— Each size chooses random sequence number

— Can be exploited:
* SYN flood attack
e Port scanning (NMAP)

