
TCP congestion control

Computer Networking: A Top Down Approach
6th edition

Jim Kurose, Keith Ross

Addison-Wesley
Some materials copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

– Segment structure

– Reliable data transfer

– Flow control

– Connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

Chapter 3 outline

2

TCP congestion control

• TCP congestion control

– Introduced by Van Jacobson in the late 80's

– Done without changing headers or routers

– Senders try and determine capacity of network

– Implicit congestion signal: packet loss

– ACK from previous packet determines when to
send more data, "self-clocking"

3

fast link slow link

ACK clock

TCP congestion control

• Each TCP sender tracks:

– rwnd = Advertised window, for flow control

– cwnd = Congestion window, for congestion control

• Sender uses minimum of the two:

– rwnd prevents overrunning receiver's buffer

– cwnd prevents overloading network

• Situation is dynamic:

– Network changes

• e.g. new high bandwidth link, hosts start/stop sending

– Sender always searching for best sending rate

4

Basic TCP congestion control

• Add one packet to window per RTT

– Works well if we start near capacity

– Otherwise could take a long time to
discover real network capacity

5

Slow start

• Slow start

– Increase congestion window rapidly
from cold start of 1

– Add 1 to window for every good ACK

• Exponential increase in packets in flight

– On packet loss, start over at 1

– Slow in comparison to original TCP

• Immediate sending up to advertised
window (caused congestion collapse)

6

http://histrory.visualland.net/tcp_swnd.html

http://tcp.cs.st-andrews.ac.uk/index.shtml?page=slow_start

http://histrory.visualland.net/tcp_swnd.html
http://tcp.cs.st-andrews.ac.uk/index.shtml?page=slow_start
http://tcp.cs.st-andrews.ac.uk/index.shtml?page=slow_start
http://tcp.cs.st-andrews.ac.uk/index.shtml?page=slow_start
http://tcp.cs.st-andrews.ac.uk/index.shtml?page=slow_start

Congestion avoidance, ssthresh

• Congestion avoidance

– Initially set slow start threshold to large value

– On multiplicative decrease, ssthresh = cwnd/2

– When ramping back up, switch to additive increase
upon reaching ssthresh

7

Fast retransmission

• Problem: Timeouts take a long time

• Fast retransmission

– Retransmit on suspected loss

– Triggered after 3rd duplicate ACK

– 20% increase in throughput

• TCP "Tahoe"

– Slow start + congestion avoidance +
fast retransmission

– Reset cwnd to 1 on timeout/3rd
duplicate ACK

8

Fast recovery

• Problem: Restarting from 1 takes too long

– We spend too long below "known" network limit

• Fast recovery

– ACK clock still working even though packet was lost

– Count up dup ACKs (including 3 that triggered fast
retransmission)

– Once packets in-flight has reached new threshold,
start sending packet on each dup ACK

– Once lost packet ACK'd, exit fast recovery and start
linear increase

9

Fast recovery

• TCP "Reno"

– Tahoe + fast recovery

10 http://www.brunocasari.net/projects_content/2?width=1000&height=500&iframe=true

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK

.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Summary: TCP congestion control

11

Some of TCP's flavors

12

Name Features

Tahoe Slow start, congestion avoidance, fast retransmit.

Reno Tahoe's features + fast recovery.

New Reno Improves Reno to handle multiple packet loss within window.
Changes to fast recovery, allows filling of multiple holes in
sequence space.

Vegas Monitor for signs of increasing congestion using RTT. Supports
linear increase and decrease of congestion window.

BIC Binary Increase Congestion control, optimized for high speed,
long latency networks (long fat networks). Default in Linux
2.6.8-2.6.18.

CUBIC Less aggressive that BIC, based on a cubic growth function.
Default in Linux 2.6.19+

Compound Microsoft, optimized for long fat networks while trying to
remain fair. Default in XP and Vista, available in Windows 7.

...

http://www.speedguide.net/articles/windows-7-vista-2008-tweaks-2574

• Avg. TCP throughput as function of window size, RTT?

– Ignore slow start, assume always data to send

• W: window size (measured in bytes)

– Avg. window size (# in-flight bytes) is ¾ W

– Avg. throughput is 3/4W per RTT

W

W/2

Avg. TCP throughput = 3
4

W
RTT

bytes/sec

13

TCP throughput

TCP over long, fat pipes
• Example:

– 1500 byte segments, 100ms RTT

– Want 10 Gbps throughput

– Requires W = 83,333 in-flight segments

• Throughput in terms of segment loss probability, L
[Mathis 1997]:

➜ To achieve 10 Gbps throughput, need a loss rate of

 L = 2 x 10-10 – a very small loss rate!

• New versions of TCP for high-speed environments

TCP throughput = 1.22 . MSS
RTT L

14

Fairness goal:

 If K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

Bottleneck
router
capacity R TCP connection 2

TCP fairness

15

Two competing sessions:
 Additive increase gives slope of 1, as throughout increases

 Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Why is TCP fair?

16

Cheating

• Not everybody plays fair:

– Run multiple TCP connections in parallel

– Change the TCP implementation

• Starts your TCP connection off with > 1 MSS

– Use a protocol without congestion control

• e.g. UDP

– Good guys slow down to make way so others can
have unfair share of bandwidth

• Possible solutions?

– Routers detect cheating and drop excess traffic

– Fair queuing

 17

Network flows

• Connection flows

– IP network is connectionless

– Datagrams really not independent

– Stream of datagrams between two hosts

– Routers can infer current flows, "soft state"

18

Fair queuing

• Use flows to determine scheduling

– Prevent hosts from hogging all the router resources

– Important if hosts don't implement host-based
congestion control (e.g. TCP congestion control)

– Each flow gets its own queue, served round-robin

19

Wireless networks

• TCP congestion control uses packet loss as signal

– Wireless/satellite links = high error rate

– TCP may mistake bit errors as congestion

• Possible solutions:

– Link layer acknowledgements and retransmission

– Forward error correction

– Split connection into wireless/wired segments

– Use other signals than packet loss: increasing RTT

20

TCP splitting
• Optimize cloud-based services

– e.g. Web search, e-mail, social networks

– Give illusion of operating locally (i.e. low latency)

– But: data center may be a long way and speed of light is a
constant + new connection subject to TCP slow-start

• TCP splitting

– Deploy front-end servers near to users
• e.g. Google's "enter-deep" clusters at access ISPs

– Client make TCP connection to front-end server, small RTT

– Front-end maintains persistent connection to back-end
with large congestion window

 21

22

http://research.microsoft.com/en-
us/um/people/chengh/papers/apollo10.pdf

http://research.microsoft.com/en-us/um/people/chengh/papers/apollo10.pdf
http://research.microsoft.com/en-us/um/people/chengh/papers/apollo10.pdf
http://research.microsoft.com/en-us/um/people/chengh/papers/apollo10.pdf
http://research.microsoft.com/en-us/um/people/chengh/papers/apollo10.pdf

Principles behind transport
layer services:

 Multiplexing,
demultiplexing

 Reliable data transfer

 Flow control

 Congestion control

Instantiation in the Internet

 UDP

 TCP

Next:

• Leaving the
network edge
(application,
transport layers)

• Into the network
core!

Chapter 3 summary

23

