
Socket programming

Computer Networking: A Top Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley

Some materials copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

192.168.23.100:143
web

server

mail
server

OS

Overview

• Chapter 2: Application Layer

– Many familiar services operate here

• Web, email, Skype, P2P file sharing

– Socket programming

• Socket programming

– In Python

– UDP

– TCP

2

application

transport

network

link

physical

Communication - division of labor

• Network

– Gets data to the destination host

– Uses destination IP address

• Operating system

– Forwards data to a given "silo" based on port #

– E.g. All port 80 request go the web server

• Application

– Actually reads and writes to socket

– Implement the application specific magic

3

Port numbers

• Popular applications have known ports

– Server uses a well-known port, 0 - 1023

– Client uses a free temporary port, 1024 - 65535

• Assigned by the operating system

4

Port Service

21 File transfer protocol (FTP)

22 Secure shell (SSH)

23 Telenet

25 Simple mail transfer protocol (SMTP)

53 Domain name system (DNS)

80 Hypertext transfer protocol (HTTP)

110 Post office protocol (POP)

143 Internet message access protocol (IMAP)

443 HTTP secure (HTTPS)

Use of port number

5

192.168.23.100:80 Requesting a non-
secure web page

web
server

mail
server

OS

192.168.23.100:443 Requesting a
secure web page

web
server

mail
server

OS

192.168.23.100:143 Requesting new
email messages

web
server

mail
server

OS

Sockets

• Socket API (applications programming interface)

– Originally in Berkeley Unix

• Thus: Berkeley sockets, BSD sockets

– De facto standard in all operating systems

– C :
• socket(), bind(), connect(), listen(),

accept(), send(), recv(), sendto(),

recvfrom(), close()

– Python:
• socket(), bind(), connect(), listen(),

accept(), send(), recv(), sentto(),

recvfrom(), close()

6

Sockets

• Socket API (applications programming interface)

– Java classes
• Socket

• ServerSocket

• InputStreamReader

• BufferedReader

• PrintWriter

7

High-level process

8

 // Fire up connection

 // to the server

 socket()

 connect()

 // Exchange data

 while (!done)

 {

 send()

 recv()

 }

 // Shutdown

 close()

 // Initial socket setup

 socket()

 bind()

 listen()

 while (1)

 {

 // Wait for new caller

 accept()

 // Exchange data

 while (!done)

 {

 recv()

 send()

 }

 // Disconnect

 close()

 }

 Client program Server program

UDP: no "connection" between client & server

• No handshaking before sending data

• Sender explicitly attaches IP destination address and

port # to each packet

• Receiver extracts sender IP address and port # from

received packet

UDP: data may be lost or received out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

("datagrams") between client and server

Socket programming: UDP

9

close
clientSocket

read datagram from clientSocket

create socket:

 clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and port=x;
send datagram via clientSocket

create socket, port = x:

serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

10

Socket interaction: UDP

from socket import *

serverName = 'hostname'

serverPort = 12000

clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)

message = raw_input('Input lowercase sentence:')

clientSocket.sendto(message, (serverName, serverPort))

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

11

Python UDP client

Include the socket library

IPv4 UDP transport

Send off data
to server+port

Wait for
response

12

Python UDP server
from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print "The server is ready to receive"

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

Create IPv4 UDP socket

Listen on specific port #

Blocks until message arrives
Gets data as well as who sent it

Send processed data back

Client must contact server

• Server process must first be
running

• Server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

• Creating TCP socket,
specifying IP address, port
number of server process

• When client creates socket:
client TCP establishes
connection to server TCP

• When contacted by client,

server TCP creates new

socket for server process

to communicate with that

particular client

– Allows server to talk

with multiple clients

– Source port numbers

used to distinguish

clients (more in Ch. 3)

TCP provides reliable, in-order

byte-stream transfer ("pipe")

between client and server

Application viewpoint:

TCP socket programming

13

TCP: connection process

14

1. Server program starts up.
2. Starts listening on port 4242.
3. OS sends all inbound connection

requests to 4242 to the server
program.

4. Client program starts up
5. Requests connection to server IP

address on port 4242.

6. Server establishes a socket
connection to client, but on
different port (2789)

7. Server can listen for new clients
on the 4242 port number.

from socket import *

serverName = 'servername'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input('Input lowercase sentence:')

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print 'From Server:', modifiedSentence

clientSocket.close()

15

Python TCP client

TCP transport

Make the
connection

Send some data (no
need to say to who!)

Close the TCP connection

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind(('',serverPort))

serverSocket.listen(1)

print 'The server is ready to receive'

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

 connectionSocket.close()

16

Python TCP server

Create TCP "welcoming" socket

Begin listens for incoming
TCP connections

Block until somebody
comes knocking, socket
created on return

Close the client's TCP connection,
not the welcoming socket

Summary

• Socket programming

– Berkley socket API

– UDP

• Just fire off messages towards destinations

• They may not get there

• They may arrive out of order

– TCP

• Establish a reliable byte-stream between two hosts

• Data always arrives

• Data arrives in order

17

