Link-layer addressing, Ethernet, VLANs

Computer Networking: A Top Down Approach

6th edition

Jim Kurose, Keith Ross Addison-Wesley

Link layer, LANs: outline

- 5.1 Introduction, services
- 5.2 Error detection, correction
- 5.3 Multiple access protocols
- **5.4 LANs**
 - Addressing, ARP
 - Ethernet
 - Switches
 - VLANS

- 5.5 Link virtualization: MPLS
- 5.6 Data center networking
- 5.7 A day in the life of a web request

Link-layer addressing

- Media Access Control address (MAC)
 - 48-bit globally unique address
 - 281,474,976,710,656 possible addresses
 - Should last till 2100
 - e.g. 01:23:45:67:89:ab

Address of all 1's is broadcast

FF:FF:FF:FF:FF

LAN addresses and ARP

Each adapter on LAN has unique *MAC* address Including routers, NAT boxes, etc.

Address translation

Problem:

- How does host send a message to someone on their own network? Their default router?
- IP address is not the link-level address (e.g. MAC)

Solution:

- Host maintains table: IP address -> link address
- Using the Address Resolution Protocol (ARP)

ARP procedure

- If destination IP in sender's ARP table:
 - Fire off link-layer packet
 - Otherwise send ARP query using broadcast address
- ARP query:
 - IP address you're looking for
 - Your own IP and hardware address
 - Destination responds with hardware address
 - Other hosts can ignore or refresh their ARP tables
- Plug-and-play, no intervention from admin

```
vertanen@katie:/usr/sbin$ arp
                                                      Flags Mask
Address
                         HWtype
                                 HWaddress
                                                                            Iface
10.33.73.39
                                c8:2a:14:53:da:e5
                         ether
                                                                            eth0
lugnut
                         ether 00:16:3e:c2:af:f0
                                                                            eth0
                               00:12:f2:81:ca:74
10.33.73.254
                         ether
                                                                            eth0
10.33.73.120
                         ether
                               78:2b:cb:ac:9c:0a
                                                                            eth0
                         ether
                                 b8:ac:6f:45:56:ef
ntcs32.mtech.edu
                                                                            eth0
10.33.73.121
                         ether
                                 78:2b:cb:ac:9c:1b
                                                                            eth0
vertanen@katie:/usr/sbin$
```

Walkthrough: Send datagram from A to B via R

- Focus on addressing
 - At IP (datagram) and MAC layer (frame)
- Assume:
 - A knows B's IP address
 - A knows IP address of first hop router, R (how?)
 - A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram

- Frame sent from A to R
- Frame received at R, datagram extracted from frame, passed up to IP

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

Classic Ethernet

Ethernet

- Luminferous ether through which electromagnetic radiation once thought to propagate
- Carrier Sense, Multiple Access with Collision Detection (CSMA/CD)
- IEEE 802.3

Robert Metcalfe, coinventor of Ethernet

Classic Ethernet

Ethernet

- Xerox Ethernet standardized as IEEE 802.3 in 1983
- Xerox not interested in commercializing
- Metcalfe leaves and forms 3Com

Douglas K. Smith and Robert C. Alexander

Classic Ethernet connectivity

Shared medium

- All hosts hear all traffic on cable
- Hosts tapped the cable
- 2500m maximum length
- May include repeaters amplifying signal
- 10 Mbps bandwidth

Classic Ethernet cabling

Thick Ethernet cable (yellow), 10BASE-5 transceivers, cable tapping tool (orange), 500m maximum length.

Cable after being "vampire" tapped.

Thin Ethernet cable (10BASE2) with BNC T-connector, 185m maximum length.

Ethernet frame format

- Frame format
 - Preamble produces 10-Mhz square wave
 - Allows clock synch between sender & receiver
 - Pad to at least 64-bytes
 - Allows collision detection

Ethernet receivers

- Hosts listens to medium
 - Deliver to host:
 - Any frame with host's MAC address
 - All broadcast frames (all 1's)
 - Multicast frames (if subscribed to)
 - Or all frames if in promiscuous mode (e.g. Wireshark)

MAC sublayer

- Media Access Control (MAC) sublayer
 - Who goes next on a shared medium
 - Ethernet hosts can sense if medium in use
 - Algorithm for sending data:
 - 1. Is medium idle? If not, wait.
 - 2. Start transmitting data, listen for collision.
 - 3. If collision detected, transmit 32-bit jamming sequence. Stop transmitting and go to backoff procedure.

Backoff procedure

- Binary exponential backoff
 - First collision
 - Wait 0-1 timeslots (chosen at random)
 - Second collision
 - Wait 0-3 timeslots
 - In general, ith collision
 - Wait a random number of timeslots between 0 and 2ⁱ 1 (max of 1023 slots)
 - Give up after 16 or so retries
 - Timeslot = 51.2 μ s

Ethernet hubs

- Long single cable
 - Hard to find breaks or loose connections
- Different wiring pattern
 - Each host wired straight to hub
 - Hub simply connected all wires together
 - Using existing office twisted pair phone lines

Switched Ethernet

Hubs

- Made network easier to manage
- But did not address capacity problem

Switches

- High-speed backplane connecting all ports
- Only output frame to destination port
- Isolates traffic, no collisions, better security

Switch forwarding table

Q: How does switch know A' is reachable via interface 4, B' is reachable via interface 5?

- A: Each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - Looks like a routing table!

Q: How are entries created, maintained in switch table?

Perhaps something like a routing protocol?

Switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

- Switch *learns* which hosts can be reached through which interfaces
 - When frame received, switch learns location of sender: incoming LAN segment
 - Records sender/ location pair in switch table

MAC addr	interface	TTL
Α	1	60

Switch table (initially empty)

Switch: frame filtering/forwarding

When frame received at switch:

- 1. Record incoming link, MAC address of sending host
- 2. Index switch table using MAC destination address
- 3. if entry found for destination then {
 if destination on segment from which frame arrived then drop frame
 else forward frame on interface indicated by entry
 }
 else flood /* fwd on all ports except arriving interface */

Self-learning, forwarding: example

 Frame destination, A', location unknown: flood

 Destination A location known: selectively send on just one link

MAC addr	interface	TTL
Α	1	60
A'	4	60

switch table (initially empty)

Source: A

Interconnecting switches

Switches can be connected together

- Q: Sending from A to G how does S_1 know to forward frame destined to F via S_4 and S_3 ?
- A: Self-learning! (works exactly the same as in single-switch case!)

Institutional network

Switches vs. routers

Both are store-and-forward:

- Router: network-layer device
 - Layer-3 packet switch
- Switch: link-layer device
 - Layer-2 packet switch

Both have forwarding tables:

- Router:
 - Compute tables using routing algorithms, IP addresses
- Switch:
 - Learn forwarding table using flooding, self-learning, MAC addresses

Fast Ethernet

Fast Ethernet

- IEEE 802.3u, 1995
- Keep all the classic Ethernet frame formats, etc.
- Reduce bit time from 100 nsec to 10nsec
- 100 Mbps
- No more multidrop cables or vampire taps

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m Uses category 3 UTP	
100Base-TX	Twisted pair	100 m Full duplex at 100 Mbps (Cat 5	
100Base-FX	Fiber optics	2000 m Full duplex at 100 Mbps; long ru	

Gigabit Ethernet

- Gigabit Ethernet
 - IEEE 802.3ab, 1999
 - 1000 Mbps
 - Unacknowledged datagram service
 - Addition of flow control
 - Unofficial support for jumbo frames
 - Up to 9KB (instead of limit of 1500 bytes)

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Even faster

- 10-Gigabit Ethernet
 - 1000x faster than original Ethernet, 2003
 - Inside data centers, long haul trunks

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85 μ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3µ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

- 40 and 100-Gigabit Ethernet
 - Starting to be deployed, 2010

Extreme Networks BlackDiamond X8 Chassis Switch 187.4 lbs, 18" x 30" x 25"

Designed for large, virtualized data centers and clouds, the Extreme Networks **BlackDiamond X8** switch provides high density 10GbE and 40GbE ... **\$20,537** from 3 stores

Compare prices

Ethernet retrospective

- Why so popular?
 - Easy to administer, no routing or config tables
 - Cheap hardware and wiring
 - Plays nice with TCP/IP
 - Ethernet and IP are connectionless protocols
 - Alternates like ATM were not
 - Periodic speed increases
 - Order of magnitude every few years without throwing away existing infrastructure
 - Borrowed good ideas from other (failed) networking technologies
 - e.g. FDDI, Fiber Channel

VLANs: motivation

Consider:

- CS user moves office to EE, but wants connect to CS switch?
- Single broadcast domain:
 - All layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
 - Security, privacy, and efficiency issues

VLANs

Virtual Local Area Network

Switches supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

Port-based VLAN: Switch ports grouped (by switch management software) so that *single* physical

... operates as multiple virtual switches

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

Port-based VLAN

***** *Traffic isolation:*

Frames to/from ports 1-8 can *only* reach ports 1-8

- Can also define VLAN based on MAC addresses of endpoints, rather than switch port
- Dynamic membership: Ports can be dynamically assigned among VLANs

- Forwarding between VLANS: done via routing
 - Just as with separate switches
 - In practice vendors sell combined switches plus routers

VLANS spanning multiple switches

- Trunk port: Carries frames between VLANs defined over multiple physical switches
 - Frames forwarded within VLAN between switches can't be vanilla 802.1 frames, must carry VLAN ID info
 - 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

802.1Q VLAN frame format

Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS)

Summary

- Address Reservation Protocol (ARP)
 - Mapping between link-layer addresses (MAC) and network-layer addresses (IP)
 - Cached table in operating system
 - Broadcast queries for IP destinations with unknown MAC

Wired Ethernet

- Long history and widely adopted
- Hubs vs. switches vs. routers
- Order of magnitude bit rate increase every few years
- Careful attention to backwards compatibility

VLANs

Allows virtual segregation of hosts into isolated groups