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Main Topics

▪ Perceptrons and Logistic Regression

▪ Optimization and Neural Networks

▪ Decision Trees

▪ Kernels and Clustering

▪ Propositional Logic

▪ First Order (Predicate) Logic

▪ Philosophical Issues

▪ Future Directions



Perceptrons and Logistic Regression

▪ Error Driven Classification

▪ Feature Vectors

▪ Simplified Biology

▪ Linear Classifiers

▪ Inputs

▪ Weights

▪ Activation

▪ Weight Updates

▪ Adjusting weight vector (when errors)

▪ Multiclass perceptrons



Perceptrons and Logistic Regression

▪ Improving the Perceptron

▪ Properties

▪ Separability

▪ Convergence

▪ Mistake Bound

▪ Problems

▪ Non-linearly separable data

▪ Mediocre generalization

▪ Overtraining

▪ Improvements

▪ Probabilistic Decision – Logistic Regression

▪ Multiclass Logistic Regression



How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive → want probability going to 1

▪ If  very negative → want probability going to 0

▪ Sigmoid function



Best w? 

▪ Maximum likelihood estimation:

with:

= Logistic Regression



Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



Optimization and Neural Networks

▪ Optimization

▪ Hill Climbing / Gradient Ascent

▪ Neural Networks

▪ Deep Neural Networks

▪ Learn Features, not just Weights

▪ Activation Functions

▪ Properties

▪ Universal Function Approximation

▪ Computing all those Derivatives

▪ How Well do they Work?



Decision Trees

▪ Formalizing Learning

▪ Inductive Learning

▪ Consistency / Bias
▪ Algorithm Preference

▪ Simplicity / Variance
▪ Reduce hypothesis space

▪ Regularization

▪ Decision Trees

▪ Expressiveness

▪ Information Gain
▪ Entropy and Information

▪ Recursive tree building process

▪ Overfitting
▪ Pruning



Example: Miles Per Gallon
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mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe



Find the First Split

▪ Look at information gain for 
each attribute

▪ Note that each attribute is 
correlated with the target!

▪ What do we split on?



Result: Decision Stump



Second Level



Final Tree



MPG Training 
Error

The test set error is much worse than the 
training set error…

…why?



Consider this 
split



Significance of a Split

▪ Starting with:
▪ Three cars with 4 cylinders, from Asia, with medium HP
▪ 2 bad MPG
▪ 1 good MPG

▪ What do we expect from a three-way split?
▪ Maybe each example in its own subset?
▪ Maybe just what we saw in the last slide?

▪ Probably shouldn’t split if the counts are so small they could be due to chance

▪ A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*

▪ Each split will have a significance value, pCHANCE



Keeping it General

▪ Pruning:
▪ Build the full decision tree

▪ Begin at the bottom of the tree

▪ Delete splits in which 

pCHANCE > MaxPCHANCE

▪ Continue working upward until 
there are no more prunable
nodes

▪ Note: some chance nodes may 
not get pruned because they 
were “redeemed” later

a b y

0 0 0

0 1 1

1 0 1

1 1 0

y = a XOR b



Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved 
test set accuracy 

compared with the 
unpruned tree



Kernels and Clustering

▪ Case-Based Learning

▪ Similarity Functions

▪ k-Nearest Neighbors

▪ Kernelization

▪ Perceptron Dual View

▪ Non-Linearity

▪ Perceptron Kernel Functions



Perceptron Weights

▪ What is the final value of a weight wy of a perceptron?
▪ Can it be any real vector?

▪ No!  It’s built by adding up inputs.

▪ Can reconstruct weight vectors (the primal representation) from 
update counts (the dual representation)



Dual Perceptron

▪ How to classify a new example x?

▪ If someone tells us the value of K for each pair of examples, never need to build the 
weight vectors (or the feature vectors)!



Dual Perceptron

▪ Start with zero counts (alpha)

▪ Pick up training instances one by one

▪ Try to classify xn,

▪ If correct, no change!

▪ If wrong: lower count of wrong class (for this instance), raise 
count of right class (for this instance)



Kernelized Perceptron

▪ If we had a black box (kernel) K that told us the dot product of two examples x and x’:
▪ Could work entirely with the dual representation

▪ No need to ever take dot products (“kernel trick”)

▪ Like nearest neighbor – work with black-box similarities

▪ Downside: slow if many examples get nonzero alpha



Kernels: Who Cares?

▪ So far: a very strange way of doing a very simple calculation

▪ “Kernel trick”: we can substitute any* similarity function in place of the 
dot product

▪ Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t 
satisfy certain technical requirements, 
lots of proofs break.  E.g. convergence, 
mistake bounds.  In practice, illegal 



Some Kernels

▪ Kernels implicitly map original vectors to higher dimensional spaces, take the dot 
product there, and hand the result back

▪ Linear kernel:

▪ Quadratic kernel:

▪ RBF: infinite dimensional representation

▪ Discrete kernels: e.g. string kernels



Why Kernels?

▪ Can’t you just add these features on your own (e.g. add all pairs of 
features instead of using the quadratic kernel)?
▪ Yes, in principle, just compute them

▪ No need to modify any algorithms

▪ But, number of features can get large (or infinite)

▪ Some kernels not as usefully thought of in their expanded representation, e.g. RBF 
kernels

▪ Kernels let us compute with these features implicitly
▪ Example: implicit dot product in quadratic kernel takes much less space and time 

per dot product

▪ Of course, there’s the cost for using the pure dual algorithms: you need to compute 
the similarity to every training datum



Kernels and Clustering

▪ Clustering

▪ Types of learning

▪ Supervised

▪ Unsupervised

▪ K-Means

▪ K-Means Process

▪ Issues

▪ Agglomerative

▪ Agglomerative Process

▪ Issues



Agglomerative Clustering

▪ Agglomerative clustering:
▪ First merge very similar instances
▪ Incrementally build larger clusters out of 

smaller clusters

▪ Algorithm:
▪ Maintain a set of clusters
▪ Initially, each instance in its own cluster
▪ Repeat:

▪ Pick the two closest clusters
▪ Merge them into a new cluster
▪ Stop when there’s only one cluster left

▪ Produces not one clustering, but a family of 
clusterings represented by a dendrogram



Agglomerative Clustering

▪ How should we define “closest” for clusters with 
multiple elements?

▪ Many options
▪ Closest pair (single-link clustering)
▪ Farthest pair (complete-link clustering)
▪ Average of all pairs
▪ Ward’s method (min variance, like k-means)

▪ Different choices create different clustering 
behaviors



Propositional Logic

▪ Knowledge Based Agents 

▪ Knowledge Base 

▪ Inference Engine 

▪ Separation of Knowledge and Process 

▪ An Example 

▪ Wumpus World 

▪ General Logic 

▪ Entailment 

▪ Models 

▪ Inference 



Propositional Logic

▪ Propositional Logic 

▪ Syntax 

▪ Truth Tables 

▪ Equivalence, Validity, Satisfiability 

▪ Inference Rules / Theorem Proving 

▪ Forward and Backward Chaining
▪ Horn Form

▪ Modus Ponens

▪ Resolution
▪ Conjunctive Normal Form (CNF) 

▪ Conversion to CNF 

▪ Resolution 







First Order (Predicate) Logic

▪ Overview 

▪ Syntax and Semantics 

▪ Basic Elements 

▪ Atomic Sentences 

▪ Complex Sentences 

▪ Models 

▪ Universal Quantification

▪ Existential Quantification

▪ Fun with Sentences 

▪ Equality 
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First Order (Predicate) Logic

▪ Unification

▪ Universal Instantiation 

▪ Existential Instantiation 

▪ Reduction to Propositional Inference 

▪ Unification 

▪ Generalized Modus Ponens 

▪ Forward and Backward Chaining

▪ Resolution
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Philosophical Issues

▪ Weak AI

▪ Strong AI

▪ Ethics and Risks



Future Directions

▪ Agent Components

▪ Agent Architectures

▪ Are We Going in the Right Direction?

▪ What if AI Does Succeed?



Questions


