CSCI 446: Artificial Intelligence

Exam 3 Review

Instructor: Michele Van Dyne
Montana Tech

Main Topics

- Perceptrons and Logistic Regression
- Optimization and Neural Networks
- Decision Trees
- Kernels and Clustering
- Propositional Logic
- First Order (Predicate) Logic
- Philosophical Issues
- Future Directions

Perceptrons and Logistic Regression

- Error Driven Classification
- Feature Vectors
- Simplified Biology
- Linear Classifiers
- Inputs
- Weights
- Activation
- Weight Updates
- Adjusting weight vector (when errors)
- Multiclass perceptrons

Perceptrons and Logistic Regression

- Improving the Perceptron
- Properties
- Separability
- Convergence
- Mistake Bound
- Problems
- Non-linearly separable data
- Mediocre generalization
- Overtraining
- Improvements
- Probabilistic Decision - Logistic Regression
- Multiclass Logistic Regression

How to get probabilistic decisions?

- Perceptron scoring: $z=w \cdot f(x)$
- If $\quad z=w \cdot f(x) \quad$ very positive \rightarrow want probability going to 1
- If $z=w \cdot f(x) \quad$ very negative \rightarrow want probability going to 0
- Sigmoid function

$$
\phi(z)=\frac{1}{1+e^{-z}}
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
\begin{aligned}
& P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{aligned}
$$

= Logistic Regression

Multiclass Logistic Regression

- Recall Perceptron:
- A weight vector for each class: w_{y}
- Score (activation) of a class y: $w_{y} \cdot f(x)$
- Prediction highest score wins $\quad y=\arg \max _{y} w_{y} \cdot f(x)$

- How to make the scores into probabilities?

original activations
softmax activations

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y^{(i)}} \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
$$

= Multi-Class Logistic Regression

Optimization and Neural Networks

- Optimization
- Hill Climbing / Gradient Ascent
- Neural Networks
- Deep Neural Networks
- Learn Features, not just Weights
- Activation Functions
- Properties
- Universal Function Approximation
- Computing all those Derivatives
- How Well do they Work?

Decision Trees

- Formalizing Learning
- Inductive Learning
- Consistency / Bias
- Algorithm Preference
- Simplicity / Variance
- Reduce hypothesis space
- Regularization
- Decision Trees
- Expressiveness
- Information Gain
- Entropy and Information
- Recursive tree building process
- Overfitting
- Pruning

Example: Miles Per Gallon

səןduexヨ 0ヵ

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75 to 78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75 to 78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79t083	america
bad	8	high	high	high	low	75 to 78	america
good	4	low	low	low	low	79t083	america
bad	6	medium	medium	medium	high	75 to 78	america
good	4	medium	low	low	low	79t083	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Find the First Split

- Look at information gain for each attribute
- Note that each attribute is correlated with the target!
- What do we split on?

Information gains using the training set (40 records) mpg values: bad good			
Input	Value	Distribution	Info Gain
cylinders	3		0.506731
	4		
	5		
	6		
	8		
displacement	low		0.223144
	medium		
	high		
horsepower	low		0.387605
	medium		
	high		
weight	low		0.304018
	medium		
	high		
acceleration	low		0.0642088
	medium		
	high		
modelyear	70to74		0.267964
	75 to78		
	79 to83		
maker	america		0.0437265
	asia		

Result: Decision Stump

mpg values: bad good

Second Level

mpg values: bad good

Significance of a Split

- Starting with:
- Three cars with 4 cylinders, from Asia, with medium HP
- 2 bad MPG
- 1 good MPG
- What do we expect from a three-way split?
- Maybe each example in its own subset?
- Maybe just what we saw in the last slide?
- Probably shouldn't split if the counts are so small they could be due to chance
- A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*
- Each split will have a significance value, $\mathrm{p}_{\text {CHANCE }}$

Keeping it General

- Pruning:
- Build the full decision tree
- Begin at the bottom of the tree
- Delete splits in which

$$
\mathrm{p}_{\text {CHANCE }}>\operatorname{MaxP}_{\text {CHANCE }}
$$

- Continue working upward until there are no more prunable nodes
- Note: some chance nodes may not get pruned because they were "redeemed" later

$$
y=a \operatorname{XOR} b
$$

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

Pruning example

- With MaxP $_{\text {Chance }}=0.1$:

Kernels and Clustering

- Case-Based Learning
- Similarity Functions
- k-Nearest Neighbors
- Kernelization
- Perceptron Dual View
- Non-Linearity
- Perceptron Kernel Functions

Perceptron Weights

- What is the final value of a weight w_{y} of a perceptron?
- Can it be any real vector?
- No! It's built by adding up inputs.

$$
\begin{aligned}
& w_{y}=0+f\left(x_{1}\right)-f\left(x_{5}\right)+\ldots \\
& w_{y}=\sum_{i} \alpha_{i, y} f\left(x_{i}\right)
\end{aligned}
$$

- Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

$$
\alpha_{y}=\left\langle\alpha_{1, y} \quad \alpha_{2, y} \ldots \alpha_{n, y}\right\rangle
$$

Dual Perceptron

- How to classify a new example x ?

$$
\begin{aligned}
\operatorname{score}(y, x) & =w_{y} \cdot f(x) \\
& =\left(\sum_{i} \alpha_{i, y} f\left(x_{i}\right)\right) \cdot f(x) \\
& =\sum_{i} \alpha_{i, y}\left(f\left(x_{i}\right) \cdot f(x)\right) \\
& =\sum_{i} \alpha_{i, y} K\left(x_{i}, x\right)
\end{aligned}
$$

- If someone tells us the value of K for each pair of examples, never need to build the weight vectors (or the feature vectors)!

Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify x_{n},

$$
y=\arg \max _{y} \sum_{i} \alpha_{i, y} K\left(x_{i}, x_{n}\right)
$$

- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise count of right class (for this instance)

$$
\begin{array}{ll}
\alpha_{y, n}=\alpha_{y, n}-1 & w_{y}=w_{y}-f\left(x_{n}\right) \\
\alpha_{y^{*}, n}=\alpha_{y^{*}, n}+1 & w_{y^{*}}=w_{y^{*}}+f\left(x_{n}\right)
\end{array}
$$

Kernelized Perceptron

- If we had a black box (kernel) K that told us the dot product of two examples x and x^{\prime} :
- Could work entirely with the dual representation
- No need to ever take dot products ("kernel trick")

$$
\begin{aligned}
\operatorname{score}(y, x) & =w_{y} \cdot f(x) \\
& =\sum_{i} \alpha_{i, y} K\left(x_{i}, x\right)
\end{aligned}
$$

- Like nearest neighbor - work with black-box similarities

- Downside: slow if many examples get nonzero alpha

Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- "Kernel trick": we can substitute any* similarity function in place of the dot product
- Lets us learn new kinds of hypotheses
* Fine print: if your kernel doesn't satisfy certain technical requirements, lots of proofs break. E.g. convergence,

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back
- Linear kernel: $\quad K\left(x, x^{\prime}\right)=x^{\prime} \cdot x^{\prime}=\sum_{i} x_{i} x_{i}^{\prime}$
- Quadratic kernel: $K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{2}$

$$
=\sum_{i, j} x_{i} x_{j} x_{i}^{\prime} x_{j}^{\prime}+2 \sum_{i} x_{i} x_{i}^{\prime}+1
$$

- RBF: infinite dimensional representation

$$
K\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2}\right)
$$

- Discrete kernels: e.g. string kernels

Why Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
- Yes, in principle, just compute them
- No need to modify any algorithms
- But, number of features can get large (or infinite)
- Some kernels not as usefully thought of in their expanded representation, e.g. RBF kernels
- Kernels let us compute with these features implicitly
- Example: implicit dot product in quadratic kernel takes much less space and time per dot product
- Of course, there's the cost for using the pure dual algorithms: you need to compute the similarity to every training datum

Kernels and Clustering

- Clustering
- Types of learning
- Supervised
- Unsupervised
- K-Means
- K-Means Process
- Issues
- Agglomerative
- Agglomerative Process
- Issues

Agglomerative Clustering

- Agglomerative clustering:
- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters
- Algorithm:
- Maintain a set of clusters
- Initially, each instance in its own cluster
- Repeat:
- Pick the two closest clusters
- Merge them into a new cluster
- Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options
- Closest pair (single-link clustering)
- Farthest pair (complete-link clustering)
- Average of all pairs
- Ward's method (min variance, like k-means)
- Different choices create different clustering
 behaviors

Propositional Logic

- Knowledge Based Agents
- Knowledge Base
- Inference Engine
- Separation of Knowledge and Process
- An Example
- Wumpus World
- General Logic
- Entailment
- Models
- Inference

Propositional Logic

- Propositional Logic
- Syntax
- Truth Tables
- Equivalence, Validity, Satisfiability
- Inference Rules / Theorem Proving
- Forward and Backward Chaining
- Horn Form
- Modus Ponens
- Resolution
- Conjunctive Normal Form (CNF)
- Conversion to CNF
- Resolution

Forward and Backward Chaining

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Resolution

Example

$$
K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1} \alpha=\neg P_{1,2}
$$

First Order (Predicate) Logic

- Overview
- Syntax and Semantics
- Basic Elements
- Atomic Sentences
- Complex Sentences
- Models
- Universal Quantification
- Existential Quantification
- Fun with Sentences
- Equality

Universal Quantification

- \forall <variables> <sentence>
- Everyone at MontanaTech is smart: $\forall x \operatorname{At}(x$, MontanaTech)) $\Rightarrow \operatorname{Smart}(x)$
- $\forall x \mathrm{P}$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P (At(KingJohn, MontanaTech)) \Rightarrow Smart(KingJohn)) \wedge (At(Richard, MontanaTech)) \Rightarrow Smart(Richard))
$\wedge($ At(MontanaTech, MontanaTech)) \Rightarrow Smart(MontanaTech)) \wedge...

A common Mistake to Avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall : $\forall x$ At(x, MontanaTech) \wedge Smart(x)
- Means "Everyone is at MontanaTech and everyone is smart"

Existential Quantification

- ヨ<variables> <sentence>
- Someone at MSU is smart:
$\exists x$ At(x, MSU) ^ Smart(x)
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P (At(KingJohn, MSU) $\wedge \operatorname{Smart}($ KingJohn))
$\vee(\operatorname{At}($ Richard, MSU) \wedge Smart(Richard))
V (MSU, MSU) ^MSU))
V ...

Another Common Mistake to Avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as main connective with \exists :
$\exists \mathrm{xAt}(\mathrm{x}, \mathrm{MSU}) \Rightarrow \operatorname{Smart}(\mathrm{x})$
- True if there is anyone who is not at MSU!

Properties of Quantifiers

- $\quad \forall x \forall y$ is the same as $\forall y \forall x$ (why??)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why??)
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- An Example:
- $\exists x \forall y \operatorname{Loves}(x, y)$
- There exists a person who loves all people.
- $\quad \forall y \exists x \operatorname{Loves}(x, y)$
- All people are loved by at least someone.
- Another Example:
- $\quad \forall \mathrm{n} \exists \mathrm{s} \mathrm{n}^{*} \mathrm{n}=\mathrm{s}$
- For every natural number n, there exists a natural number s such that $n^{2}=s$.
- $\quad \exists \mathrm{s} \forall \mathrm{n} \mathrm{n}^{*} \mathrm{n}=\mathrm{s}$
- There exists a natural number s such that for all natural numbers $n, n^{2}=s$.
- Quantifier duality: each can be expressed using the other $\forall x$ Likes(x, IceCream)
$\neg \exists x \neg$ Likes $(x$, IceCream)
$\exists x$ Likes(x, Broccoli)
$\neg \forall x \neg$ Likes $(x$, Broccoli)

First Order (Predicate) Logic

- Unification
- Universal Instantiation
- Existential Instantiation
- Reduction to Propositional Inference
- Unification
- Generalized Modus Ponens
- Forward and Backward Chaining
- Resolution
- We can get the inference immediately if we can find a substitution Θ such that King(x) and Greedy(x) match King(John) and Greedy (y)
- $\Theta=\{x / J o h n, y / J o h n\}$ works
- Unify $(\alpha, \beta)=\theta$, if $\alpha \Theta=\beta \theta$

Unification

p	q	θ
Knows $($ John, $x)$	Knows $($ John, Jane $)$	
Knows $($ John, $x)$	Knows $(y, O J)$	
Knows $($ John, $x)$	Knows $(y$, Mother $(y))$	
Knows $($ John,$x)$	Knows $(x, O J)$	

Generalized Modus Ponens (GMP)

$$
\begin{aligned}
& \frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta} \quad \text { where } p_{i}{ }^{\prime} \theta=p_{i} \theta \text { for all } i \\
& p_{1}{ }^{\prime} \text { is } \operatorname{King}(J o h n) \quad p_{1} \text { is } \operatorname{King}(x) \\
& p_{2}{ }^{\prime} \text { is } \operatorname{Greedy}(y) \quad p_{2} \text { is } \operatorname{Greed}(x) \\
& \theta \text { is }\{x / J o h n, y / J o h n\} q \text { is } \operatorname{Evil}(x) \\
& q \theta \text { is Evil(John) }
\end{aligned}
$$

- GMP used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified
- GMP is sound

Forward

 Chaining Proof

 Chaining Proof}

American(West) \quad Missile(M1) \quad Owns(Nono,M1) \quad Enemy(Nono,America)

Forward

Chaining Proof

Forward

Chaining Proof

Backward

Chaining
Example

Criminal(West)

Backward

Chaining
Examole

Backward

Chaining
Examole

Backward

Chaining
Example

Backward

Chaining

Example

Backward

Chaining

Example

Backward

Chaining

Example

Resolution Proof:

Definite Clauses

\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Sells}(x, y, z) \vee \neg$ Hostile $(z) \vee \operatorname{Criminal}(x)$
\neg Criminal(West)

Philosophical Issues

- Weak AI
- Strong AI
- Ethics and Risks

Future Directions

- Agent Components
- Agent Architectures
- Are We Going in the Right Direction?
- What if Al Does Succeed?
?

