
CSCI 446: Artificial Intelligence

Exam 3 Review

Instructor: Michele Van Dyne

Montana Tech

Main Topics

▪ Perceptrons and Logistic Regression

▪ Optimization and Neural Networks

▪ Decision Trees

▪ Kernels and Clustering

▪ Propositional Logic

▪ First Order (Predicate) Logic

▪ Philosophical Issues

▪ Future Directions

Perceptrons and Logistic Regression

▪ Error Driven Classification

▪ Feature Vectors

▪ Simplified Biology

▪ Linear Classifiers

▪ Inputs

▪ Weights

▪ Activation

▪ Weight Updates

▪ Adjusting weight vector (when errors)

▪ Multiclass perceptrons

Perceptrons and Logistic Regression

▪ Improving the Perceptron

▪ Properties

▪ Separability

▪ Convergence

▪ Mistake Bound

▪ Problems

▪ Non-linearly separable data

▪ Mediocre generalization

▪ Overtraining

▪ Improvements

▪ Probabilistic Decision – Logistic Regression

▪ Multiclass Logistic Regression

How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive → want probability going to 1

▪ If very negative → want probability going to 0

▪ Sigmoid function

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Optimization and Neural Networks

▪ Optimization

▪ Hill Climbing / Gradient Ascent

▪ Neural Networks

▪ Deep Neural Networks

▪ Learn Features, not just Weights

▪ Activation Functions

▪ Properties

▪ Universal Function Approximation

▪ Computing all those Derivatives

▪ How Well do they Work?

Decision Trees

▪ Formalizing Learning

▪ Inductive Learning

▪ Consistency / Bias
▪ Algorithm Preference

▪ Simplicity / Variance
▪ Reduce hypothesis space

▪ Regularization

▪ Decision Trees

▪ Expressiveness

▪ Information Gain
▪ Entropy and Information

▪ Recursive tree building process

▪ Overfitting
▪ Pruning

Example: Miles Per Gallon

4
0
 E

x
a
m

p
le

s

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

Find the First Split

▪ Look at information gain for
each attribute

▪ Note that each attribute is
correlated with the target!

▪ What do we split on?

Result: Decision Stump

Second Level

Final Tree

MPG Training
Error

The test set error is much worse than the
training set error…

…why?

Consider this
split

Significance of a Split

▪ Starting with:
▪ Three cars with 4 cylinders, from Asia, with medium HP
▪ 2 bad MPG
▪ 1 good MPG

▪ What do we expect from a three-way split?
▪ Maybe each example in its own subset?
▪ Maybe just what we saw in the last slide?

▪ Probably shouldn’t split if the counts are so small they could be due to chance

▪ A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*

▪ Each split will have a significance value, pCHANCE

Keeping it General

▪ Pruning:
▪ Build the full decision tree

▪ Begin at the bottom of the tree

▪ Delete splits in which

pCHANCE > MaxPCHANCE

▪ Continue working upward until
there are no more prunable
nodes

▪ Note: some chance nodes may
not get pruned because they
were “redeemed” later

a b y

0 0 0

0 1 1

1 0 1

1 1 0

y = a XOR b

Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved
test set accuracy

compared with the
unpruned tree

Kernels and Clustering

▪ Case-Based Learning

▪ Similarity Functions

▪ k-Nearest Neighbors

▪ Kernelization

▪ Perceptron Dual View

▪ Non-Linearity

▪ Perceptron Kernel Functions

Perceptron Weights

▪ What is the final value of a weight wy of a perceptron?
▪ Can it be any real vector?

▪ No! It’s built by adding up inputs.

▪ Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation)

Dual Perceptron

▪ How to classify a new example x?

▪ If someone tells us the value of K for each pair of examples, never need to build the
weight vectors (or the feature vectors)!

Dual Perceptron

▪ Start with zero counts (alpha)

▪ Pick up training instances one by one

▪ Try to classify xn,

▪ If correct, no change!

▪ If wrong: lower count of wrong class (for this instance), raise
count of right class (for this instance)

Kernelized Perceptron

▪ If we had a black box (kernel) K that told us the dot product of two examples x and x’:
▪ Could work entirely with the dual representation

▪ No need to ever take dot products (“kernel trick”)

▪ Like nearest neighbor – work with black-box similarities

▪ Downside: slow if many examples get nonzero alpha

Kernels: Who Cares?

▪ So far: a very strange way of doing a very simple calculation

▪ “Kernel trick”: we can substitute any* similarity function in place of the
dot product

▪ Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t
satisfy certain technical requirements,
lots of proofs break. E.g. convergence,
mistake bounds. In practice, illegal

Some Kernels

▪ Kernels implicitly map original vectors to higher dimensional spaces, take the dot
product there, and hand the result back

▪ Linear kernel:

▪ Quadratic kernel:

▪ RBF: infinite dimensional representation

▪ Discrete kernels: e.g. string kernels

Why Kernels?

▪ Can’t you just add these features on your own (e.g. add all pairs of
features instead of using the quadratic kernel)?
▪ Yes, in principle, just compute them

▪ No need to modify any algorithms

▪ But, number of features can get large (or infinite)

▪ Some kernels not as usefully thought of in their expanded representation, e.g. RBF
kernels

▪ Kernels let us compute with these features implicitly
▪ Example: implicit dot product in quadratic kernel takes much less space and time

per dot product

▪ Of course, there’s the cost for using the pure dual algorithms: you need to compute
the similarity to every training datum

Kernels and Clustering

▪ Clustering

▪ Types of learning

▪ Supervised

▪ Unsupervised

▪ K-Means

▪ K-Means Process

▪ Issues

▪ Agglomerative

▪ Agglomerative Process

▪ Issues

Agglomerative Clustering

▪ Agglomerative clustering:
▪ First merge very similar instances
▪ Incrementally build larger clusters out of

smaller clusters

▪ Algorithm:
▪ Maintain a set of clusters
▪ Initially, each instance in its own cluster
▪ Repeat:

▪ Pick the two closest clusters
▪ Merge them into a new cluster
▪ Stop when there’s only one cluster left

▪ Produces not one clustering, but a family of
clusterings represented by a dendrogram

Agglomerative Clustering

▪ How should we define “closest” for clusters with
multiple elements?

▪ Many options
▪ Closest pair (single-link clustering)
▪ Farthest pair (complete-link clustering)
▪ Average of all pairs
▪ Ward’s method (min variance, like k-means)

▪ Different choices create different clustering
behaviors

Propositional Logic

▪ Knowledge Based Agents

▪ Knowledge Base

▪ Inference Engine

▪ Separation of Knowledge and Process

▪ An Example

▪ Wumpus World

▪ General Logic

▪ Entailment

▪ Models

▪ Inference

Propositional Logic

▪ Propositional Logic

▪ Syntax

▪ Truth Tables

▪ Equivalence, Validity, Satisfiability

▪ Inference Rules / Theorem Proving

▪ Forward and Backward Chaining
▪ Horn Form

▪ Modus Ponens

▪ Resolution
▪ Conjunctive Normal Form (CNF)

▪ Conversion to CNF

▪ Resolution

First Order (Predicate) Logic

▪ Overview

▪ Syntax and Semantics

▪ Basic Elements

▪ Atomic Sentences

▪ Complex Sentences

▪ Models

▪ Universal Quantification

▪ Existential Quantification

▪ Fun with Sentences

▪ Equality

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

First Order (Predicate) Logic

▪ Unification

▪ Universal Instantiation

▪ Existential Instantiation

▪ Reduction to Propositional Inference

▪ Unification

▪ Generalized Modus Ponens

▪ Forward and Backward Chaining

▪ Resolution

▪

▪

▪

▪

▪

▪

Philosophical Issues

▪ Weak AI

▪ Strong AI

▪ Ethics and Risks

Future Directions

▪ Agent Components

▪ Agent Architectures

▪ Are We Going in the Right Direction?

▪ What if AI Does Succeed?

Questions

