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Main Topics

Probability

Bayes Nets

Decision Networks and Value of Information
Hidden Markov Models

Naive Bayes



Probability

Random Variables
Joint and Marginal Distributions
Conditional Distributions

“Rules”

= Product Rule
= Chain Rule
= Bayes’ Rule

Inference
Independence

= Absolute
= Conditional



Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,... Xn

specifies a real number for each assignment (or outcome):
P(X1{=x1,Xo=x0,...Xpn = xpn)

P(x1,22,...20)

" Must obey: P(x1,xp,...2n) > 0

Z P(x1,20,...20) = 1

(.CUl,xQ,...IEn)

P(T, W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) T P
— hot 0.5
T w P Id 0.5
hot sun 0.4 P(t) = ZP(t, s) = -
hot rain 0.1 S P(W)
cold sun 0.2 i P
cold rain 0.3 ' sun 0.6
P(s) = %:P(t’ s) rain 0.4

P(X1==z1) =) P(X1 =11,X0 = x2)
T



The Chain Rule

= Really a generalization of the Product Rule:

Definition of conditional probability: P(x|y) = P(x,y)/P(y)

Product Rule: P(x,y) = P(x]y)P(y) OR
. P(x,y) = P(y|x)P(x)

Chain Rule: P(x,, X,, ... X;) = P(X{)P(X, | X{)P(X3]|Xq, X5) .. P(X,]|Xq - X,11)

There are n! ways to order the above conditionals
= But when we build a Bayes net, we eliminate some of the conditional combinations by the topology of the net

= Implies we can’t get everything we could have gotten from a full joint distribution — but we do get what is important in
the problem domain



The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(z1,20,23) = P(z1)P(x2]z1)P(x3|r1,20)

P(z1,22,...2n) = | [ P(zlz1.. . 2i—1)
7

= Why is this always true?



The Chain Rule

P(z1,20,23) = P(z1)P(x2]z1)P(x3|r1,20)

P(x1,20,...20n) = H P(x;lz1...x5-1)
7

= Why is this always true?

= =1 P(x,)
" =2 P(x,|x,)
= =3 P(x3]Xq, X5)

i=n P(X, | Xy, Xy o X,11)

= And how does we show it is equal to the full joint?
= An example — next slide



The Chain Rule - Example

P(Xq, X5, X3) = P(x1)P(x, | X{)P(X3]| X4, X,) 3 variable chain
= P(xq) * P(x,, ;) * P(x3, X, X;) Expand conditionals
P(x,) P(x,, X1)

=P *P(x,, X\ * P(x5, X5, X;) Cancel terms
1 2: 27 3. 22 2
) ) Xl)

= P(X3, X5, X4) The two are equal




Bayes Nets

= Representation
= Graphical Model Notation
= Semantics
= Conditional Probability Tables
" |Independence
= Bayes Net Independence Assumption
= D-Separation
= Causal Chains

= Common Cause
= Common Effect



Bayes Nets

= |nference
® Enumeration
= Variable Elimination

= Factors
= Selected Joint
= Single Conditional
= Family of Conditionals
= Specified Family

= Variable Ordering

= Sampling
= Prior Sampling
= Rejection Sampling
= Likelihood Weighting
= Gibbs Sampling



P(B)

0.001

0.999

Example: Alarm Network

PUIA)

Burglary

0.9

0.1

0.05

0.95

A M | P(M]|A)
+a [ +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E | P(E) w7

+e | 0.002 o

e | 0.998 R Y T .
&

B E A P(A|B,E)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e | -a 0.06

-b | +e | +a 0.29

b | +e | -a 0.71

-b | -e | +a 0.001

-b | -e | -a 0.999




Example

P(B|j,m) < P(B,j,m)

P(B) P(E) P(A|B, E) P(lA)  P(m|A)
Choose A

P(A|B,F)

P(j]A) X > P(j,m,AlB,E) [¥ > P(j,m|B,E)
P(ml|A)

P(B)

P(E)

P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
P(E) ::><> P(j,m, E|B) :z > P(j,m|B)
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m,B) Normalize> P(B|j,m)



Bayes’ Net Sampling Summary

= Prior Sampling P = Rejection Sampling P(Q | e)




Decision Networks and Value of Information

= Decision Networks
= Chance Nodes (Bayes Nets)
= Action Nodes
= Utility Nodes

= Value of Information

= Maximum Expected Utility (MEU)
= With and without evidence

= Value of Obtaining Information

= Properties
= Non-negative
= Non-additive
» Order-independent

= POMDPs — Partially Observable Markov Decision Processes
= Belief States



Decision Networks

Umbrella = leave

EU(leave) Z P(w)U (leave, w)

:0.7-100+O.3-O:7O

Umbrella = take

EU(take) Z P(w)U (take, w)

A W U(AW)
= 0.7-20+0.3-70 = 35 W | P(w) leave sun 100
sun 0.7 leave rain 0
rain 0.3 take sun 20
Optimal decision = leave take rain 20

MEU(¢) = maxEU(a) = 70



Decisions as Outcome Trees

= Almost exactly like expectimax / MDPs
= What s changed?




Example: Decision Networks

Umbrella = leave A W UiAWw)
Umbrella leave | sun 100
EU(leave|bad) = ZP(w\bad)U(leave, w) oave | rain 0

take sun 20

=0.34- 100 + 0.66 - 0 = 34 0 take | ran | 70
Umbrella = take @

EU(take|bad) = » ~ P(w|bad)U (take, w) W | P(W|F=bad)
w sun 0.34
—0.34-20 4 0.66 - 70 = 53 rain 0.66

Optimal decision = take
orsie

MEU(F = bad) = max EU(a|bad) = 53




Decisions as Outcome Trees




POMDPs

MDPs have:
= States S
= Actions A
= Transition function P(s’ |s,a) (or T(s,a,s’))
= Rewards R(s,a,s’ )

POMDPs add:

= QObservations O
= QObservation function P(o|s) (or O(s,0))

POMDPs are MDPs over belief
states b (distributions over S) ,

We’ Il be able to say more in a few lectures



Demo: Ghostbusters with VPI

Example: Ghostbusters

= |n (static) Ghostbusters:

= Belief state determined by
evidence to date {e}

= Tree really over evidence sets

= Probabilistic reasoning needed
to predict new evidence given
past evidence

= Solving POMDPs

= One way: use truncated
expectimax to compute
approximate value of actions

= What if you only considered
busting or one sense followed
by a bust?

" You get a VPI-based agent!




Hidden Markov Models

= Exact Filtering

= Base Cases
= Observation
= Passage of Time

= Forward Algorithm
= Particle Filtering

" Process

= Generate Particles

Elapse Time (Simulate Change)

“Observe” Evidence — Weight according to probability
= Resample

= Dynamic Bayes Networks
= Most Likely Explanation (MLE)



Recap: Filtering

Elapse time: compute P( X, | €1.11)
Pl = 3 Pleilens) - Pl |
o T CETE
Observe: compute P( X, | ;)
- TTETTT
P(z¢ler) o< P(xilers—1) - Plet|wy)

Belief: <P(rain), P(sun)>

@ @ P(X1) <0.5,0.5>  Prioron X,

P(X1 | Ex = umbrella) <0.82,0.18> Observe
@ @ P(Xo | By = umbrella) <0.63, 0.37> Elapse time

)
P(Xo | By = umb, By = umb) <0.88,0.12> Observe
[Demo: Ghostbusters Exact



Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
. ® 0 A ——— . . .
(] (] (O
@ e @ ® ® ...
o °
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Naive Bayes

= (Classification
= Model-Based Classification

" Training and Testing
= Generalization and Overfitting
= Parameter Estimation
= Smoothing
= Unseen Events
= Tuning
= Features



Questions




