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Main Topics

▪ Probability

▪ Bayes Nets

▪ Decision Networks and Value of Information

▪ Hidden Markov Models

▪ Naïve Bayes



Probability

▪ Random Variables

▪ Joint and Marginal Distributions

▪ Conditional Distributions

▪ “Rules”

▪ Product Rule

▪ Chain Rule

▪ Bayes’ Rule

▪ Inference

▪ Independence

▪ Absolute

▪ Conditional



Joint Distributions

▪ A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

▪ Must obey:

▪ Size of distribution if n variables with domain sizes d?

▪ For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate variables 

▪ Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



The Chain Rule

▪ Really a generalization of the Product Rule:

▪ Definition of conditional probability: P(x|y) = P(x,y)/P(y)

▪ Product Rule: P(x,y) = P(x|y)P(y) OR
▪ P(x,y) = P(y|x)P(x)

▪ Chain Rule: P(x1, x2, … xn) = P(x1)P(x2|x1)P(x3|x1, x2) … P(xn|x1 … xn-1)

▪ There are n! ways to order the above conditionals
▪ But when we build a Bayes net, we eliminate some of the conditional combinations by the topology of the net
▪ Implies we can’t get everything we could have gotten from a full joint distribution – but we do get what is important in 

the problem domain



The Chain Rule

▪ More generally, can always write any joint distribution as an 
incremental product of conditional distributions

▪ Why is this always true?



The Chain Rule

▪ Why is this always true?
▪ i = 1 P(x1)
▪ i = 2 P(x2|x1)
▪ i = 3 P(x3|x1, x2)
▪ …
▪ i = n P(xn|x1, x2, … xn-1)

▪ And how does we show it is equal to the full joint?
▪ An example – next slide



The Chain Rule - Example

P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1, x2) 3 variable chain

= P(x1) * P(x2, x1) * P(x3, x2, x1) Expand conditionals

P(x1)          P(x2, x1)

= P(x1) * P(x2, x1) * P(x3, x2, x1) Cancel terms

P(x1)          P(x2, x1)

= P(x3, x2, x1) The two are equal



Bayes Nets

▪ Representation

▪ Graphical Model Notation

▪ Semantics
▪ Conditional Probability Tables 

▪ Independence

▪ Bayes Net Independence Assumption

▪ D-Separation
▪ Causal Chains

▪ Common Cause

▪ Common Effect



Bayes Nets

▪ Inference

▪ Enumeration

▪ Variable Elimination
▪ Factors

▪ Selected Joint

▪ Single Conditional

▪ Family of Conditionals

▪ Specified Family

▪ Variable Ordering

▪ Sampling
▪ Prior Sampling

▪ Rejection Sampling

▪ Likelihood Weighting

▪ Gibbs Sampling



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Example

Choose A



Example

Choose E

Finish with B

Normalize



Bayes’ Net Sampling Summary

▪ Prior Sampling  P

▪ Likelihood Weighting  P( Q | e)

▪ Rejection Sampling  P( Q | e )

▪ Gibbs Sampling  P( Q | e )



Decision Networks and Value of Information

▪ Decision Networks

▪ Chance Nodes (Bayes Nets)

▪ Action Nodes

▪ Utility Nodes

▪ Value of Information

▪ Maximum Expected Utility (MEU)
▪ With and without evidence

▪ Value of Obtaining Information

▪ Properties
▪ Non-negative

▪ Non-additive

▪ Order-independent

▪ POMDPs – Partially Observable Markov Decision Processes

▪ Belief States



Decision Networks

Weather

Umbrella

U

W P(W)

sun 0.7

rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70



Decisions as Outcome Trees

▪ Almost exactly like expectimax / MDPs

▪ What’s changed?

U(t,s)

Weather | {} Weather | {}

{}

U(t,r) U(l,s) U(l,r)

Weather

Umbrella

U



Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

U(t,r) U(l,s) U(l,r)

{b}

Weather

Forecast
=bad

Umbrella

U



POMDPs

▪ MDPs have:
▪ States S
▪ Actions A
▪ Transition function P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’)

▪ POMDPs add:
▪ Observations O

▪ Observation function P(o|s) (or O(s,o))

▪ POMDPs are MDPs over belief

states b (distributions over S)

▪ We’ll be able to say more in a few lectures

a

s

s, a

s,a,s’

s’

a

b

b, a

o

b
’



Example: Ghostbusters

▪ In (static) Ghostbusters:
▪ Belief state determined by 

evidence to date {e}
▪ Tree really over evidence sets
▪ Probabilistic reasoning needed 

to predict new evidence given 
past evidence

▪ Solving POMDPs
▪ One way: use truncated 

expectimax to compute 
approximate value of actions

▪ What if you only considered 
busting or one sense followed 
by a bust?

▪ You get a VPI-based agent!

a

{e}

e, a

e’

{e, e’}

a

b

b, a

b’

abust

{e}

{e}, asense

e’

{e, e’}

asense

U(abust, {e})

abust

U(abust, {e, e’})

Demo: Ghostbusters with VPI 

e’



Hidden Markov Models

▪ Exact Filtering

▪ Base Cases
▪ Observation

▪ Passage of Time

▪ Forward Algorithm

▪ Particle Filtering

▪ Process
▪ Generate Particles

▪ Elapse Time (Simulate Change)

▪ “Observe” Evidence – Weight according to probability

▪ Resample

▪ Dynamic Bayes Networks

▪ Most Likely Explanation (MLE)



Recap: Filtering

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>
Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe
[Demo: Ghostbusters Exact 

Filtering (L15D2)]



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Naïve Bayes

▪ Classification

▪ Model-Based Classification

▪ Training and Testing

▪ Generalization and Overfitting

▪ Parameter Estimation

▪ Smoothing

▪ Unseen Events

▪ Tuning

▪ Features



Questions


