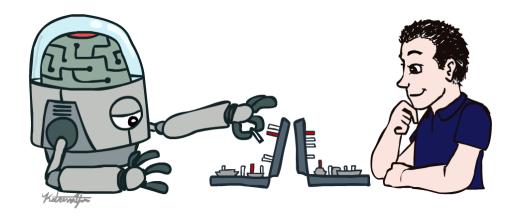
CSCI 446: Artificial Intelligence

Exam 2 Review



Instructor: Michele Van Dyne

Montana Tach

Main Topics

- Probability
- Bayes Nets
- Decision Networks and Value of Information
- Hidden Markov Models
- Naïve Bayes

Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distributions
- "Rules"
 - Product Rule
 - Chain Rule
 - Bayes' Rule
- Inference
- Independence
 - Absolute
 - Conditional

Joint Distributions

A joint distribution over a set of random variables: X₁, X₂,...X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

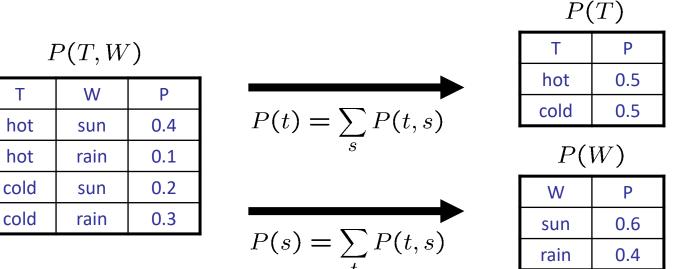
D	(T	7	W)
1	T	,	VV)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding



 $P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$

The Chain Rule

Really a generalization of the Product Rule:

- Definition of conditional probability: P(x|y) = P(x,y)/P(y)
- Product Rule: P(x,y) = P(x|y)P(y) OR
- P(x,y) = P(y|x)P(x)
- Chain Rule: $P(x_1, x_2, ..., x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) ... P(x_n|x_1 ..., x_{n-1})$
- There are n! ways to order the above conditionals
 - But when we build a Bayes net, we eliminate some of the conditional combinations by the topology of the net
 - Implies we can't get everything we could have gotten from a full joint distribution but we do get what is important in the problem domain

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

The Chain Rule

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

- Why is this always true?
 - i = 1 P(x₁)
 - i = 2 $P(x_2 | x_1)$
 - i = 3 $P(x_3 | x_1, x_2)$
 - ...
 - i = n $P(x_n | x_1, x_2, ..., x_{n-1})$
- And how does we show it is equal to the full joint?
 - An example next slide

The Chain Rule - Example

 $P(x_{1}, x_{2}, x_{3}) = P(x_{1})P(x_{2}|x_{1})P(x_{3}|x_{1}, x_{2}) \quad 3 \text{ variable chain}$ $= P(x_{1}) * \underline{P(x_{2}, x_{1})} * \underline{P(x_{3}, x_{2}, x_{1})} \text{ Expand conditionals}$ $P(x_{1}) \quad P(x_{2}, x_{1})$ $= P(x_{1}) * \underline{P(x_{2}, x_{1})} * \underline{P(x_{3}, x_{2}, x_{1})} \text{ Cancel terms}$ $P(x_{1}) \quad P(x_{2}, x_{1})$ $= P(x_{3}, x_{2}, x_{1}) \quad The two are equal$

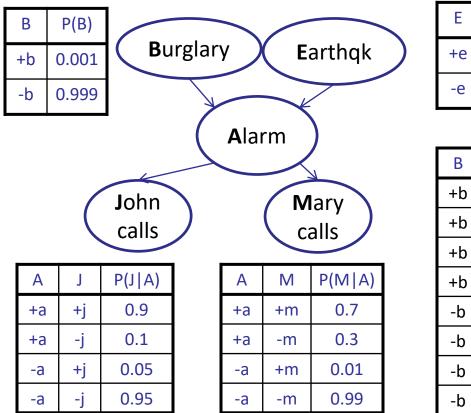
Bayes Nets

- Representation
 - Graphical Model Notation
 - Semantics
 - Conditional Probability Tables
- Independence
 - Bayes Net Independence Assumption
 - D-Separation
 - Causal Chains
 - Common Cause
 - Common Effect

Bayes Nets

- Inference
 - Enumeration
 - Variable Elimination
 - Factors
 - Selected Joint
 - Single Conditional
 - Family of Conditionals
 - Specified Family
 - Variable Ordering
 - Sampling
 - Prior Sampling
 - Rejection Sampling
 - Likelihood Weighting
 - Gibbs Sampling

Example: Alarm Network



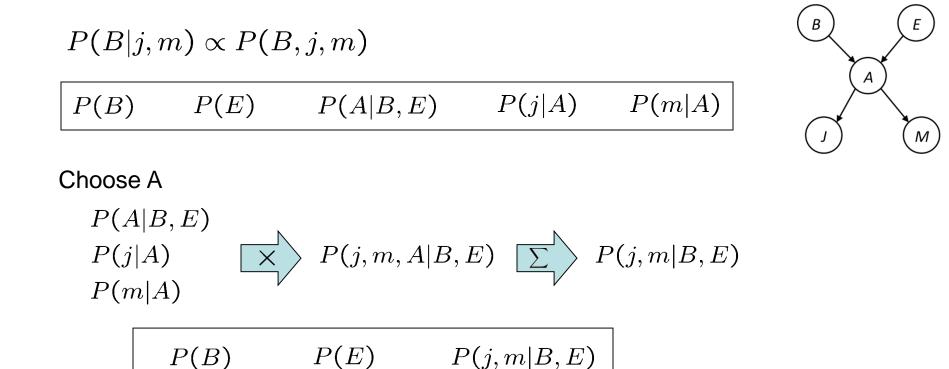
В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

P(E)

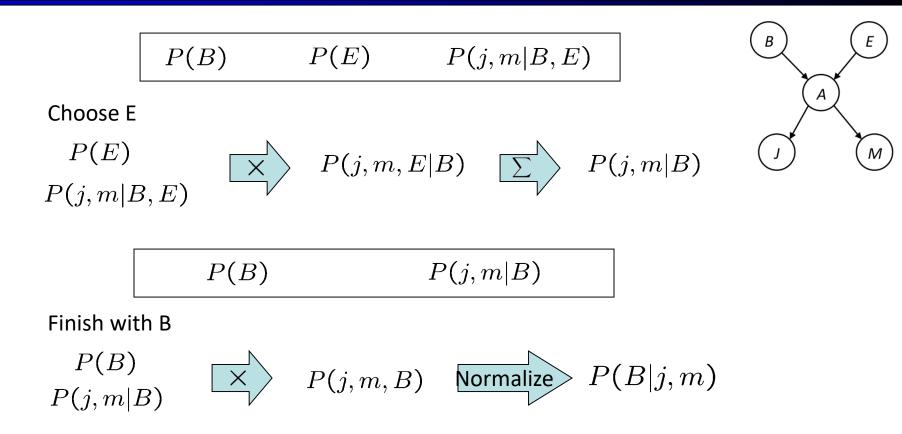
0.002

0.998

Example

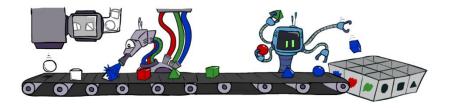


Example

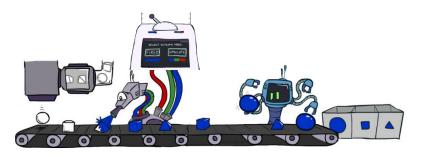


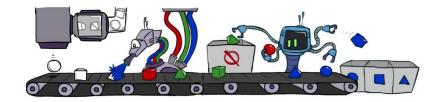
Bayes' Net Sampling Summary

Prior Sampling P



Likelihood Weighting P(Q | e)



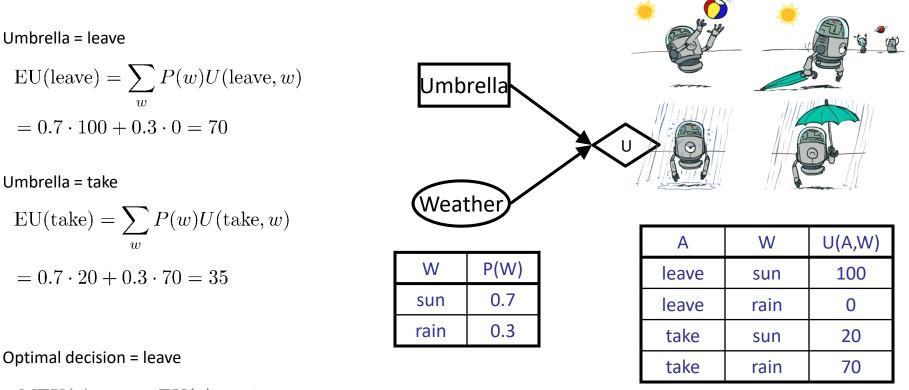


Gibbs Sampling P(Q | e)

Decision Networks and Value of Information

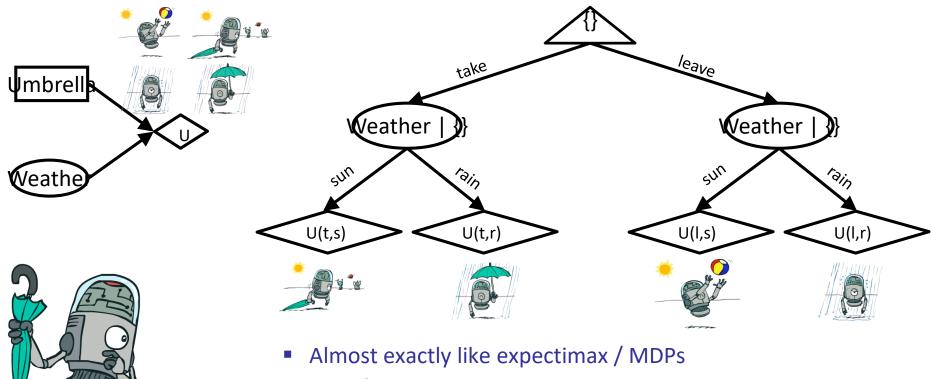
- Decision Networks
 - Chance Nodes (Bayes Nets)
 - Action Nodes
 - Utility Nodes
- Value of Information
 - Maximum Expected Utility (MEU)
 - With and without evidence
 - Value of Obtaining Information
 - Properties
 - Non-negative
 - Non-additive
 - Order-independent
- POMDPs Partially Observable Markov Decision Processes
 - Belief States

Decision Networks



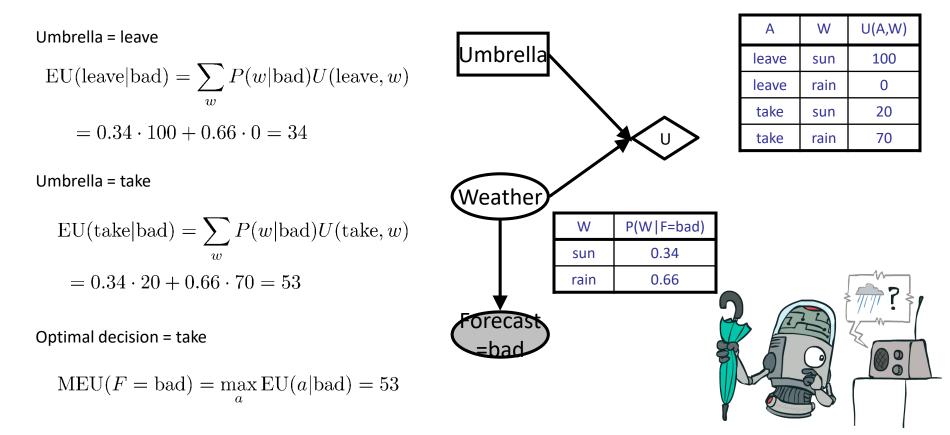
 $MEU(\phi) = \max_{a} EU(a) = 70$

Decisions as Outcome Trees

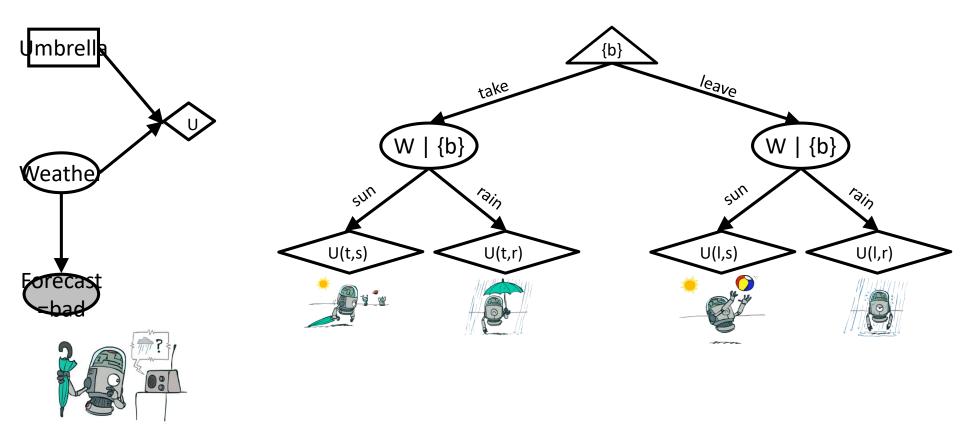


What's changed?

Example: Decision Networks

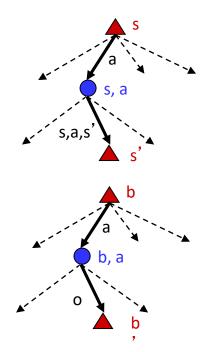


Decisions as Outcome Trees



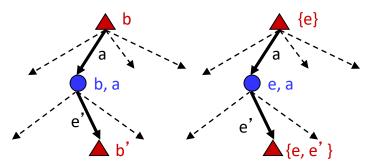
POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition function P(s' | s,a) (or T(s,a,s'))
 - Rewards R(s,a,s')
- POMDPs add:
 - Observations O
 - Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)
- We'll be able to say more in a few lectures

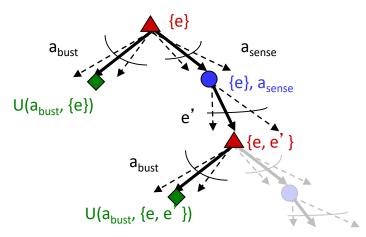


Example: Ghostbusters

- In (static) Ghostbusters:
 - Belief state determined by evidence to date {e}
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence



- Solving POMDPs
 - One way: use truncated expectimax to compute approximate value of actions
 - What if you only considered busting or one sense followed by a bust?
 - You get a VPI-based agent!



Hidden Markov Models

- Exact Filtering
 - Base Cases
 - Observation
 - Passage of Time
 - Forward Algorithm
- Particle Filtering
 - Process
 - Generate Particles
 - Elapse Time (Simulate Change)
 - "Observe" Evidence Weight according to probability
 - Resample
 - Dynamic Bayes Networks
 - Most Likely Explanation (MLE)

Recap: Filtering

Elapse time: compute P(X_t | e_{1:t-1}) $P(x_t | e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) \cdot P(x_t | x_{t-1})$ Observe: compute P(X_t | e_{1:t}) $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

 E_2

E₁

 <0.01</td>
 <0.01</td>
 <0.01</td>
 <0.01</td>
 <0.01</td>
 <0.01</td>

 <0.01</td>
 <0.01</td>
 0.06
 <0.01</td>
 <0.01</td>
 <0.01</td>

 <0.01</td>
 0.76
 0.06
 0.06
 <0.01</td>
 <0.01</td>
 <0.01</td>

 <0.01</td>
 <0.01</td>
 0.06
 <0.01</td>
 <0.01</td>
 <0.01</td>

 Belief: <P(rain), P(sun)>

 $P(X_1)$ <0.5, 0.5>
 Prior on X_1
 $P(X_1 | E_1 = umbrella)$ <0.82, 0.18>
 Observe

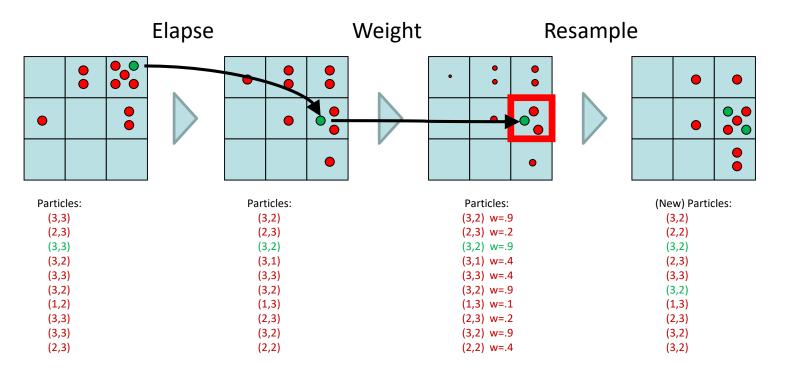
 $P(X_2 | E_1 = umbrella)$ <0.63, 0.37>
 Elapse time

 $P(X_2 | E_1 = umb, E_2 = umb)$ <0.88, 0.12>
 Observe

 [Demo: Ghostbusters Exact

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution



[Demos: ghostbusters particle filtering (L15D3,4,5)]

Naïve Bayes

Classification

- Model-Based Classification
- Training and Testing
 - Generalization and Overfitting
 - Parameter Estimation
 - Smoothing
 - Unseen Events
 - Tuning
 - Features

Questions

