INFERENCE IN
PROPOSITIONAL LOGIC

T ETes e
o - Breeze ~7
4 Bkench TLETEREE PIT
e
3 ERaal N PIT
WL
S =~ ld |
T RENE A e
Hregze -
2 Shench = - -
e o
i - PT -
ETART

Outline

- Inference rules and theorem proving
- Forward chaining
- Backward chaining
- Resolution

D
Proof Methods

- Proof methods divide into (roughly) two kinds:

- Application of inference rules
- Legitimate (sound) generation of new sentences from old

- Proof = a sequence of inference rule applications
- Can use inference rules as operators in a standard search algorithm

- Typically require translation of sentences into a normal form
- Model checking

- Truth table enumeration (always exponential in n)

- Heuristic search in model space (sound but incomplete)
- e.g., min-conflicts-like hill-climbing algorithms

L
Forward and Backward Chaining

- Horn Form (restricted)
- KB = conjunction of Horn clauses

- Horn clause =

- proposition symbol; or

- (conjunction of symbols) = symbol
-Eg,CA(B=>A)A(CAD)=B)

- Modus Ponens (for Horn Form): complete for Horn KBs
A e ap N Nay, = 3
3
- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward Chaining

- Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found
-P=Q q
-LAM=P
-BAL=>M
-AAP=L
-AAB=L
M
- A
- B L

Forward Chaining
Algorithm

function PL-FC-ENTAILS? (KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
g, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
p— Popr(agenda)
unless inferred[p] do
inferred|p| — true
for each Horn clause ¢ in whose premise p appears do
decrement count|c]
if count[¢] = 0 then do
if HEAD[¢] = ¢ then return true
PuUsH(HEAD[¢], agenda)
return false

Forward Chaining
Example

Forward Chaining
Example

P=Q

LAM=P
BAL=>M
AANP=>L
AAB=L

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Forward Chaining
Example

Proof of Completeness

- Forward chaining (FC) derives every atomic sentence that
Is entailed by KB

- 1. FC reaches a fixed point where no new atomic
sentences are derived

- 2. Consider the final state as a model m, assigning
true/false to symbols

- 3. Every clause in the original KB is true in m
- Proof: Suppose a clause a; A ... Aa, = bisfalseinm
- Thena; A ... Ag is true in m and b is false in m
- Therefore the algorithm has not reached a fixed point!

- 4. Hence m is a model of KB
- 5. If KB E q, q is true in every model of KB, including m

L
Backward Chaining

- ldea: work backwards from the query q:

- To prove g by backward chaining,
- Check if q is known already, or

- Prove by backward chaining (BC) all premises of some rule concluding
q

- Avoid loops: check if new subgoal is already on the goal
stack

- Avoid repeated work: check if new subgoal
- 1) has already been proved true, or
- 2) has already failed

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Backward
Chaining
Example

Q
&

3
PN

Backward
Chaining
Example

P=Q

LAM=P
BAL=>M
AANP=>L
AAB=L

Backward
Chaining
Example

Backward
Chaining
Example

Forward vs. Backward Chaining

- FC is data-driven, automatic, unconscious processing,
- e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
- e.g., Where are my keys? How do | get into a PhD program?

- Complexity of BC can be much less than linear in size of
KB

Resolution

- Conjunctive Normal Form (CNF - universal)
- Conjunction of disjunctions of literals ;. ., ., _p
- Disjunctions of literals means clauses
- E.g.,
Resolution inference rule (for CNF): complete for propositional logic
SRVARERVE S mi VoV omy,
O oo NNy VN g V- Mj—1 vV Mjp1 V-V iy

- where |; and m; are complementary literals.

E.g.,
P13 A% P22 —|p2?2 PPK
P 3 PN
L £
- Resolution is sound and complete for ﬁ“ -
propositional logic | W

Conversion to
CNF

Bi1 & (PiaV Pyy)

1. Eliminate <, replacing @ < [with (o« =) A (7 = «).
(B11 = (Pi2V 1)) AN ((Pi2V 1) = Bia)

2. Eliminate =, replacing o« = 7 with —a \VV /7.
(=B11V PiaV Pag) AN (=(PiaV Pa1)V Byg)

3. Move — inwards using de Morgan's rules and double-negation:
(—B11V PiaV Pyy) AN ((wPiaN—=Pa1) V Byg)

4. Apply distributivity law (V' over /) and flatten:

(=B11V PiaV Pyy) AN (=P1aV Bia) AN (=FPy1 V Byg)

- Proof by contradiction, Resolufi
i.e., show KB A —a esolution

unsatisfiable Algorithm

function PL-RESOLUTION(KB, &) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«r, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A -«
new— { }
loop do
for each C}, C'; in clauses do
resolvents — PL-RESOLVE(C;, C})
if resolvents contains the empty clause then return frue
new+— new U resolvents
if new C clauses then return false
clauses +— clauses \J new

Resolution
Example

KB = (Bl,l —— (Pljg V PQJ)) N _'Bl,l o = _'PLQ

_‘P2,1V Bu ol B1,1V PI,ZV Pz,l _'Pl,lv Bl,l o Bl,l Pl,z

v R’ AN

|
51V Pl’zv Bl’l Pl,lv PE,I\/ _‘Pl,z bV Pz’lv Bl’l Pl,lv Pz,lv _'P2,1 _|P2,1 P,

Summary

- Logical agents apply inference to a knowledge base to derive
new information and make decisions
- Basic concepts of logic:
- Syntax: formal structure of sentences
- Semantics: truth of sentences with respect to models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and
negated information, reason by cases, efc.

- Forward, backward chaining are linear-time, complete for Horn
clauses

- Resolution is complete for propositional logic
- Propositional logic lacks expressive power

Summary

- Inference rules and theorem proving
- Forward chaining
- Backward chaining
- Resolution

