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[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Today

▪ HMMs

▪ Particle filters

▪ Demo bonanza!

▪ Most-likely-explanation queries

▪ Applications:

▪ “I Know Why You Went to the Clinic: Risks and Realization of HTTPS 
Traffic Analysis”

▪ Robot localization / mapping

▪ Speech recognition



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



4



5



Recap: Reasoning Over Time

▪ Markov models

▪ Hidden Markov models

X2X1 X3 X4 rain sun

0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

[Demo: Ghostbusters Markov Model (L15D1)]



Inference: Base Cases

E1

X1

X2X1



Inference: Base Cases

X2X1



Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Inference: Base Cases

E1

X1



Observation

▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Recap: Filtering

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

[Demo: Ghostbusters Exact Filtering (L15D2)]



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0
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▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the 
distribution

▪ Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Robot Localization

▪ In robot localization:
▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping
▪ We do not know the map or our location

▪ State consists of position AND map!

▪ Main techniques: Kalman filtering (Gaussian HMMs) 
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using 
multiple sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) 
is computed

▪ Online belief updates: Eliminate all variables from the previous time step; store factors 
for current time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b



DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3) 

▪ Elapse time: Sample a successor for each particle 

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on 
the sample

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by
▪ States X
▪ Observations E
▪ Initial distribution:
▪ Transitions:
▪ Emissions:

▪ New query: most likely explanation:

▪ New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



State Trellis

▪ State trellis: graph of states and transitions over time

▪ Each arc represents some transition

▪ Each arc has weight

▪ Each path is a sequence of states

▪ The product of weights on a path is that sequence’s probability along with the evidence

▪ Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)



AI in the News

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis
Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)



Challenge

▪ Setting

▪ User we want to spy on use HTTPS to browse the internet

▪ Measurements

▪ IP address

▪ Sizes of packets coming in

▪ Goal

▪ Infer browsing sequence of that user

▪ E.g.: medical, financial, legal, …



HMM

▪ Transition model

▪ Probability distribution over links on the current page + some 
probability to navigate to any other page on the site

▪ Noisy observation model due to traffic variations

▪ Caching

▪ Dynamically generated content

▪ User-specific content, including cookies

→ Probability distribution P( packet size | page )



Results

BoG = described approach, others are prior work



Today

▪ HMMs

▪ Particle filters

▪ Demo bonanza!

▪ Most-likely-explanation queries

▪ Applications:

▪ “I Know Why You Went to the Clinic: 
Risks and Realization of HTTPS 
Traffic Analysis”

▪ Speech recognition


