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Bayes’ Net Representation

 A directed, acyclic graph, one node per random variable

 A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination 
of parents’ values

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Variable Elimination

 Interleave joining and marginalizing

 dk entries computed for a factor over k 
variables with domain sizes d

 Ordering of elimination of hidden variables 
can affect size of factors generated

 Worst case: running time exponential in the 
size of the Bayes’ net

…

…



Approximate Inference: Sampling



Sampling

 Sampling is a lot like repeated simulation

 Predicting the weather, basketball games, …

 Basic idea

 Draw N samples from a sampling distribution S

 Compute an approximate posterior probability

 Show this converges to the true probability P

 Why sample?

 Learning: get samples from a distribution 
you don’t know

 Inference: getting a sample is faster than 
computing the right answer (e.g. with 
variable elimination)



Sampling

 Sampling from given distribution

 Step 1: Get sample u from uniform 
distribution over [0, 1)
 E.g. random() in python

 Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each outcome associated with 
a sub-interval of [0,1) with sub-interval 
size equal to probability of the 
outcome

 Example

 If random() returns u = 0.83, 
then our sample is C = blue

 E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3
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Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99

-w 0.01

-r +w 0.90

-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…



Prior Sampling

 For i=1, 2, …, n

 Sample xi from P(Xi | Parents(Xi))

 Return (x1, x2, …, xn)



Prior Sampling

 This process generates samples with probability:

…i.e. the BN’s joint probability

 Let the number of samples of an event be

 Then

 I.e., the sampling procedure is consistent



Example

 We’ll get a bunch of samples from the BN:
+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

 If we want to know P(W)
 We have counts <+w:4, -w:1>

 Normalize to get P(W) = <+w:0.8, -w:0.2>

 This will get closer to the true distribution with more samples

 Can estimate anything else, too

 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

 Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

 Let’s say we want P(C)

 No point keeping all samples around

 Just tally counts of C as we go

 Let’s say we want P(C| +s)

 Same thing: tally C outcomes, but 
ignore (reject) samples which don’t 
have S=+s

 This is called rejection sampling

 It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling

 IN: evidence instantiation

 For i=1, 2, …, n

 Sample xi from P(Xi | Parents(Xi))

 If xi not consistent with evidence

 Reject: Return, and no sample is generated in this cycle

 Return (x1, x2, …, xn)



Likelihood Weighting



 Idea: fix evidence variables and sample the 
rest
 Problem: sample distribution not consistent!

 Solution: weight by probability of evidence 
given parents

Likelihood Weighting

 Problem with rejection sampling:
 If evidence is unlikely, rejects lots of samples

 Evidence not exploited as you sample

 Consider P(Shape|blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5

-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, +s, +r, +w

…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting

 IN: evidence instantiation

 w = 1.0

 for i=1, 2, …, n

 if Xi is an evidence variable

 Xi = observation xi for Xi

 Set w = w * P(xi | Parents(Xi))

 else

 Sample xi from P(Xi | Parents(Xi))

 return (x1, x2, …, xn), w



Likelihood Weighting

 Sampling distribution if z sampled and e fixed evidence

 Now, samples have weights

 Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting

 Likelihood weighting is good

 We have taken evidence into account as we 
generate the sample

 E.g. here, W’s value will get picked based on the 
evidence values of S, R

 More of our samples will reflect the state of the 
world suggested by the evidence

 Likelihood weighting doesn’t solve all our 
problems

 Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

 We would like to consider evidence when we 
sample every variable

 Gibbs sampling



Gibbs Sampling



Gibbs Sampling

 Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an 
arbitrary instantiation consistent with the evidence.  Sample one variable 
at a time, conditioned on all the rest, but keep evidence fixed.  Keep 
repeating this for a long time.

 Property: in the limit of repeating this infinitely many times the resulting 
sample is coming from the correct distribution

 Rationale: both upstream and downstream variables condition on 
evidence.

 In contrast: likelihood weighting only conditions on upstream evidence, 
and hence weights obtained in likelihood weighting can sometimes be 
very small.  Sum of weights over all samples is indicative of how many 
“effective” samples were obtained, so want high weight.



 Step 2: Initialize other variables 
 Randomly

Gibbs Sampling Example: P( S | +r)

 Step 1: Fix evidence
 R = +r

 Steps 3: Repeat
 Choose a non-evidence variable X

 Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Efficient Resampling of One Variable

 Sample from P(S | +c, +r, -w)

 Many things cancel out – only CPTs with S remain!

 More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Bayes’ Net Sampling Summary

 Prior Sampling  P

 Likelihood Weighting  P( Q | e)

 Rejection Sampling  P( Q | e )

 Gibbs Sampling  P( Q | e )



Further Reading on Gibbs Sampling*

 Gibbs sampling produces sample from the query distribution P( Q | e ) 
in limit of re-sampling infinitely often

 Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods 

 Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-Hastings) 

 You may read about Monte Carlo methods – they’re just sampling
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