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Bayes’ Nets: Independence
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Probability Recap

Conditional probability P(xly) = Pz, y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rUIe P(Xl,XQ,...Xn) = P(Xl)P(X2|X1)P(X3‘X1,X2)...

T
— H P(X’ilxla"°7Xi—1)

1=1

X, Y independent if and only if:  Va,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z : P(x,y|z) = P(z|z)P(y|z)

X1Y|Z



Bayes’ Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
* Inference: given a fixed BN, whatis P(X | e)?

= Representation: given a BN graph, what kinds of distributions can it encode?

"= Modeling: what BN is most appropriate for a given domain?



Bayes Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1




Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999
A | J | PUIA) o
+a | 4] 0.9
+a - 0.1
-a +j 0.05
a | | 095
| N —
P(+b,—e,+a,—7,+m) =

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3 -m 0.3
-a +m 0.01
-a -m 0.99

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+tb | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
b | -e | -a 0.999




Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
A | ) | PUIA) o A | M |PM|A)
va | 4 | 09 =1 am | o7 B | E| A | PA|BE)
o 0.1 va | -m 03 +b | +e | +a 0.95
-3 +] 0.05 a | +m 0.01 +b | +e | -a 0.05
a | 5 | 095 a | -m | 099 | e | e Oes
+b | -e -a 0.06
) -b | +e | +a 0.29
| | . S
P( | ba €, Ta, ja—l_m) - b | +e | -a 0.71
P(+b)P(=€)P(+al +b,—e) P(~j| + @) P(+m| + a) = [ e [vo [ o
-b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Size of a Bayes Net

= How bigis a joint distribution over N = Both give you the power to calculate
Boolean variables?

P(Xq1,Xo,... X
2N ( 1 25 n)

= BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1) = Also faster to answer queries (coming)

= Also easier to elicit local CPTs




Bayes’ Nets

JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data



Conditional Independence

X and Y are independent if

Ve,y P(z,y) = P(z)P(y) -—--= X1Y

X and Y are conditionally independent given Z

Vz,y,2 P(z,y|z) = P(z|2)P(y|z) —--=> X 1Y|Z

(Conditional) independence is a property of a distribution

Example:

Alarm 1L Fire|Smoke




Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(xz;|z1---xi_1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

" |mportant for modeling: understand assumptions made

when choosing a Bayes net graph



Example

OnOnOR0

* Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?



Independence in a BN

" |mportant question about a BN:
= Are two nodes independent given certain evidence?

" |f yes, can prove using algebra (tedious in general)
" |If no, can prove with a counter example

No¥o¥o

» Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which causes traffic.
= X caninfluence Z, Z can influence X (via Y)

= Addendum: they could be independent: how?



D-separation: Outline




D-separation: Outline

= Study independence properties for triples
" Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
gueries



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!
= One example set of CPTs for which X is not
om I~ independent of Z is sufficient to show this

[?:) ////// A independence is not guaranteed.

Example:

(7

AN

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no

traffic
X: Low pressure Y: Rain Z: Traffic
" |In numbers:
P(x,y,z) = P(x)P(y|lz)P(z|y) P(+y [ +x)=1,P(-y | -x)=1,

P(+z|+y)=1,P(-z|-y)=1



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

LA ~ Y/ _ P(z,y,2)
(} i { J P(z|lz,y) = P(;jy)

b@w _ P()P(ylx) P(zy)

P(z)P(yl|z)
X: Low pressure Y: Rain Z: Traffic — P(Z|y)

==

Yes!

P(z,y,2) = P(z)P(y|lx) P(z|y) » Evidence along the chain “blocks” the

influence



Common Cause

. o o o 11 7
» This configurationisa common cause

Y: Project Praject
Due!
due

5
X: Forums @ @

busy :E @? Z: Lab full

P(z,y,z) = P(y)P(z|y) P(z|y)

" Guaranteed X independentof Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= |n numbers:

P(+x | +y)=1,P(-x|-y)=1,
P(+z | +y)=1,P(-z|-y)=1



Common Cause

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?
Y: Project Praject Pl vy =
due Due P(Z|$,y) — ( v Y, )

P(x,y)

_ P@)P(zly) P(z]y)

P(y)P(z|y)
= P(z|y)
X: Forums
busy Yes!
P(x,y,z) = P(y)P(x|y)P(z|y) = QObserving the cause blocks influence

between effects.



Common Effect

= Last configuration: two causesofone = Are XandY independent?

effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= QObserving an effect activates influence between
Z: Traffic ,
possible causes.




The General Case




The General Case

" General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases




Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected 0 e
by an undirected path not blocked by
a shaded node, they are conditionally
independent

= Almost works, but not quite

= Where does it break?

= Answer: the v-structure at T doesn’t count
as a link in a path unless “active”




Active / Inactive Paths

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples
evidence variables {Z}?
= Yes,if Xand Y “d-separated” by Z O—’O—FO
» Consider all (undirected) paths from Xto Y
= No active paths = independence! O

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A < B — C where B is unobserved
= Common effect (aka v-structure)
A — B <~ C where B or one of its descendents is observed

= Allit takes to block a path is a single inactive segment

€ g



D-Separation

= Query: Xz AL X]‘{Xkla 7an} ?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed

Xi XX {Xp,, oo, Xp, } E
= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed
X L X {Xps ooy Xi ) @




Example

R1 B Yes
R 1l B|T

R B|T'



Example

L1LTT Yes
LI B Yes
L1 B|T

L1 B|T

LI B|T,R Yes



Example

= \/ariables:

= R: Raining

= T: Traffic ’/®\‘
= D: Roof drips

= S: I’'m sad 6 Q

= Questions:

T 1D
T1 D|R Yes
T D|R,S




Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X L XiH{ Xk, ooy Xk, }

= This list determines the set of probability
distributions that can be represented




Computing All Independences

MPUTE ALL THE
%l?\DEPEN DENCES!

S
6%
hel
£



Topology Limits Distributions

(X1LY,X U ZYlZ,

(X1 Z|Y)
XULZ|V,XLY|ZY1Z|X}

Given some graph topology
G, only certain joint

distributions can be @

encoded @ @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the {}
set of distributions, but has
several costs

Full conditioning can encode
any distribution

&P
5P &P
PP PP



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

" Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= ABayes net sjointdistribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution



Bayes’ Nets

JRepresentation
JConditionaI Independences

" Probabilistic Inference
* Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
" Probabilistic inference is NP-complete
» Sampling (approximate)

= Learning Bayes’ Nets from Data



