CSClI 446: Artificial Intelligence
Probability

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Today

= Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
= Inference

" Independence

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
®= On the ghost: red

= 1 or 2 away: orange

= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Uncertainty

= General situation:

= QObserved variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for 005 N oos
managing our beliefs and knowledge .
<0.01




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=lsitraining?

= T=lIsit hotorcold?

= D =How long will it take to drive to work?
= L =Whereisthe ghost?

= We denote random variables with capital letters

= |ijke variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}



= Associate a probability with each value

= Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

= \Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T P
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W =rain) = 0.1

Ve P(X =2)>0

and

Y P(X=uz)=1



Joint Distributions

" A joint distribution over a set of random variables: X4, X»,... X,

specifies a real number for each assignment (or outcome):

P(X1{=21,Xp0=xo,... Xy, = xn)

P(T,W)
P(x1,20,...2n)
T W P
= Must obey: P(xz1,25,...2n) >0 hot | sun | 0.4
hot | rain 0.1
Z P(fﬁlana e xn) =1 cold | sun 0.2
(21,22,...0n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Probabilistic Models

A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T W P
Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether assignments cold >un 0.2
(outcomes) are likely cold rain 0.3
= Normalized: sum to 1.0

. . ] . . :
Ideally: only certain variables directly interact Constraint over TW

Constraint satisfaction problems: T W
= Variables with domains

= Constraints: state whether assignments are

possible hot rain
= |deally: only certain variables directly interact

hot sun

cold sun

- [ || H|©

cold rain




Events

= An event is a set E of outcomes

P(E)Y= )  P(z1...zn)

(ﬂjl...xn)eE

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




" P(+x, +y) ?

= P(+x)?

" P(-yOR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

——-
P(t) =) P(ts)

—
P(s) = Z P(t, s)
t

P(X1=uz1) =) P(X1=u11,Xo =)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) =) P(z,y)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P ()

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— 5T = 2
PW=sT=c)= LW=85T=c)_ 02
P(T = c) 0.5

_——

=PW=s,T=c)+P(W=nr,T=c)
= 02403 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

= P(-x|+y)?

" Py | +x)?



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T. W)
2
W P
T W P
0.8
g >un hot sun 0.4
' 0.2
g e hot rain 0.1
E: P(W|T = cold) cold | sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6




Normalization Trick

P(W=sT=c)=TW=8T=c)

P(T = ¢)
. P(W =3s5,T =c¢)
P(T,W) T PW=sT=c+PW=rn1=c)
0.2
T W P 02+0.3 P(W|T = ¢)

hot sun 0.4
hot rain 0.1

sun 0.4
cold sun 0.2 . 06

, P(W=rT =c) rain -
P(W = ¢|T = ¢) =

cold rain 0.3 (W =r| c) P(T = o)

. PW =r,T =c¢)

C PW=sT=c)+PW=rT=c)
03
02403

0.6



Normalization Trick

P(W=s,T=rc)
P(T =r¢)
. P(W =3s5T=c¢c)
C PW=sT=c)+PW=rT=c)

PW =sT=c¢c)=

0.2+4+0.3
P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(ce,W) (make it sum to one) P(WI|T' = c¢)
hot sun 0.4 evidence T W P W p
hot rain 0.1 . cold sun 0.2 | sun 0.4
cold sun 0.2 cold | rain 1 0.3 rain | 0.6
cold rain 0.3

PW=rT=0¢)

P(T=¢)
_ P(W=nrT=c)
CPW=s5T=c)+P(W=nrT=c)
03
T 02403

POW =r|T =¢) =

=056



Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(c, W) (make it sum to one) P(W|T = ¢)
hot sun 0.4 evidence T W P W p
hot rain 0.1 — cold | sun | 0.2 p sun 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(xy,20) _  P(xy,22)
P(x2) >oaq P(r1,22)

P(z1|z) =



" P(X | Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬂ



= (Dictionary) To bring or restore to a

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

ﬂ
Z=0.5

To Normalize

normal condition

W P
sun 0.4
rain 0.6

N

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

ﬁ
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= QObserving new evidence causes beliefs to be updated




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
» Evidence variables: FEi...Ep=e1...¢€; X1, Xo,... Xn variables, too
= Query* variable:
Query Q All variables P(Qle1 ...ex)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Peo
0.05 —
> X 7
0.07

02 |

—T—
0.01 W

—— Z=ZP(Q,€1'”€;C)
P(Q,e1...e;) = Z P(Qahlu-hrael---%) 4

Bk 1
1 X1,X;..Xn P(Q\el“‘ek):EP(Qael“'ek)



Inference by Enumeration

. P(W)? S T | w p

summer | hot sun 0.30

summer | hot rain 0.05

summer | cold sun 0.10

= i ?
P(W|wmter). summer | cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter | cold sun 0.15

= P(W | winter, hot)? winter | cold | rain | 0.20




Inference by Enumeration

= QObvious problems:
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|ly) = P(x,y) < rews=

~ =l




The Product Rule

P(y)P(z|ly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W | P D W
R p wet sun 0.1 wet sun
sun | 0.8 ary un | 93 <:> dry el
rain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(xz|x1)P(x3|z1, x2)

P(z1,22,...2n) = || P(zilzy ... 2i—1)
7

= Why is this always true?



Bayes Rule




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(ylz)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = 292 py

P(y)
= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P (effect)
effec

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 o

xample
P(+S‘ + m) =08 given?
P(+s| —m) = 0.01

P(tm|+s) = LEslEmIPGEm) P(+s| +m)P(+m) 0.8 x 0.0001

P(+s) " P(+s|+ m)P(+m) + P(+s| — m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

. P(D|W)
= Jlven:
P(W) D W P
R P wet sun 0.1
cun 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?



Ghostbusters, Revisited

= Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=vyellow | G=(1,1)) =0.1

P(g|r) o< P(r|g)P(g)

= We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

[Demo: Ghostbuster — with probability (L12D2) ]



Today

" Probability

= Random Variables

= Joint and Marginal Distributions

= Conditional Distribution

= Product Rule, Chain Rule, Bayes’ Rule
= |Inference

" |ndependence




