CSCI 446: Artificial Intelligence

Markov Decision Processes ||

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

= SO
= \/a

ving MDPs

ue lteration

Today

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount 7) 7 8,3,8

"= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V7(s) = expected utility starting in s and A 553
acting optimally state

a (s, a)is a
" The value (utility) of a g-state (s,a): v g-state
Q’(s,a) = expected utility starting out A N
having taken action a from state s and 58,5 (s,a,8') is a
(thereafter) acting optimally / g transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

M%I

WWWW ‘

Values of States

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mngT(s, a,s’) {R(S,CL, s + ’)/V*(S/)}

S

Racing Search Tree

Racing Search Tree

mmm

\\‘kh‘!‘d’ \\ié\‘!‘!\\‘!‘d’

A

VAT CHEMREERI TR CRTEIRE TR TR

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterify<1 THTREETILLL TR TR L THIIRLLL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’s what a depth-k expectimax would give from s

& &

1

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72 » 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.78)» 1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

L
<@g

EE R NN RN RN

VR L T | Y WY Y VR Y | O W Y| AV O Y o

H‘Hl!“ H.Hh“ﬂ'i“ H‘Hl!“ H‘Hl!“”‘f“ H‘HMI H'i“

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

S

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Overheated

Assume no discount!

" [v 0 J Viaa(5) € max S Ts,, 1) [R(s,a,) 4+ V()]

S

Convergence*

How do we know the V| vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

= That last layer is at best all Ry,

" |tisatworst Ry, / \ /

= But everything is discounted by yk that far out
= SoV,andV,,, are at most y* max|R| different
= So as kincreases, the values converge

Non-Deterministic Search

= SO

ving MDPs

ue lteration

Today

