CSCI 446: Artificial Intelligence Markov Decision Processes II

Instructor: Michele Van Dyne

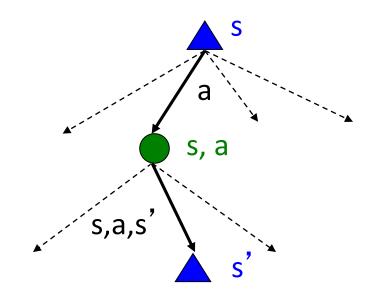
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

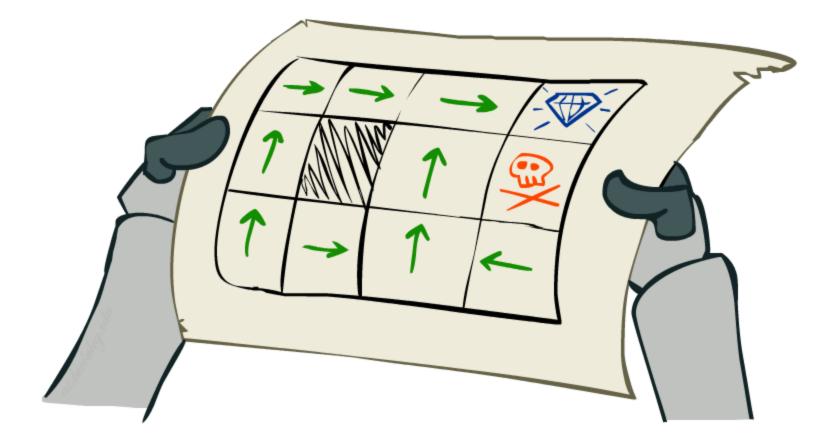
- Solving MDPs
- Value Iteration

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

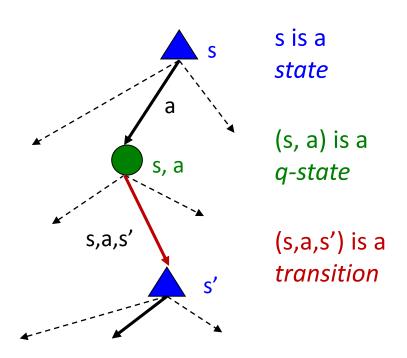


Solving MDPs



Optimal Quantities

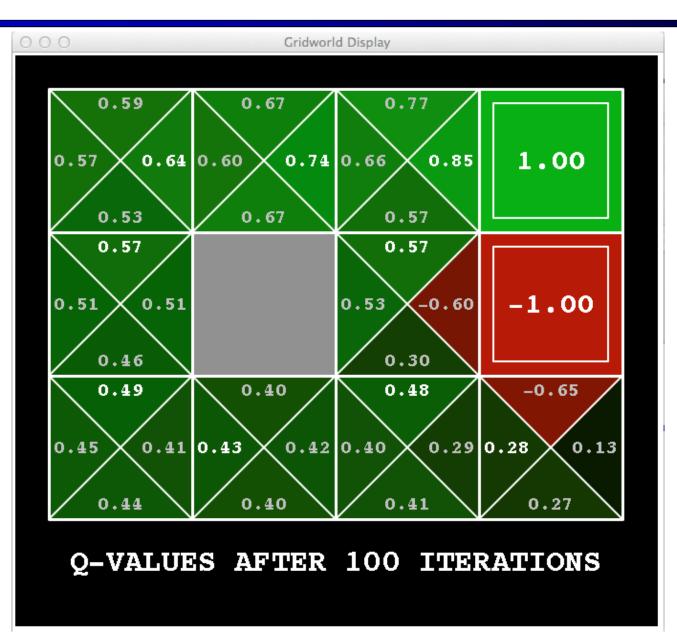
- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s



Snapshot of Demo – Gridworld V Values

00	0	Gridworl	d Display	
	0.64)	0.74)	0.85)	1.00
	•		•	
	0.57		0.57	-1.00
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

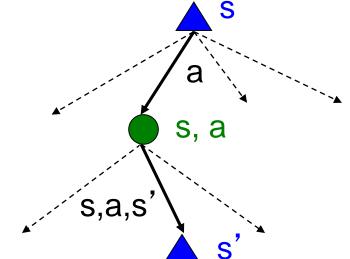
Snapshot of Demo – Gridworld Q Values



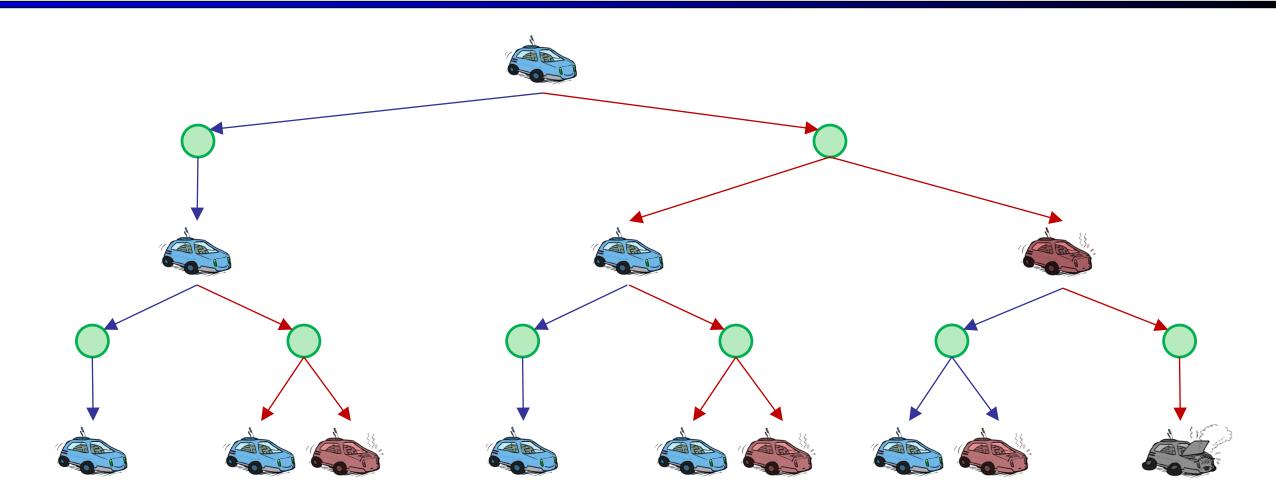
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

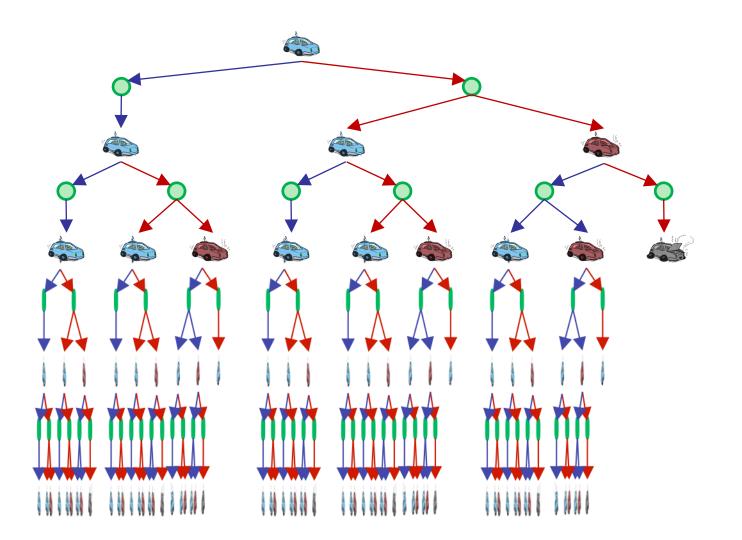
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Racing Search Tree

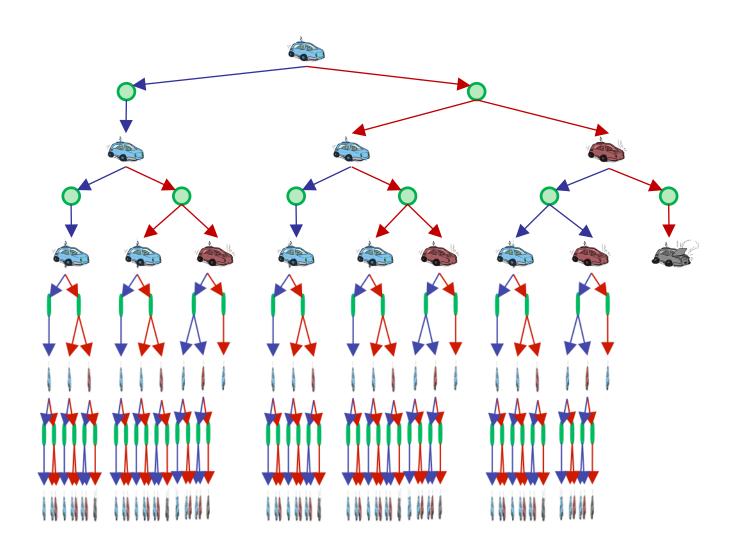


Racing Search Tree



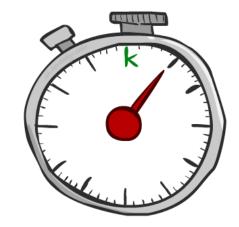
Racing Search Tree

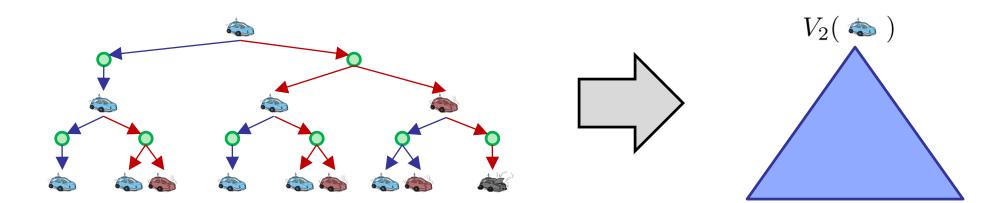
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





C C Gridworld Display				
		^		
0.00	0.00	0.00	0.00	
•		^		
0.00		0.00	0.00	
^	^	^	^	
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

0	0	Gridworl	d Display		
	• 0.00	▲ 0.00	0.00)	1.00	
	•		∢ 0.00	-1.00	
	•	•	• 0.00	0.00	
	VALUES AFTER 1 ITERATIONS				

0 0	Gridworl	d Display	
•	0.00 >	0.72)	1.00
•		• 0.00	-1.00
•	• 0.00	•	0.00
	S AFTER		•

k=3

0	O O Gridworld Display			
	0.00 >	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUES AFTER 3 ITERATIONS			

k=4

0 0	0	Gridworl	d Display		
	0.37 ▶	0.66)	0.83)	1.00	
	• 0.00		• 0.51	-1.00	
	• 0.00	0.00 →	• 0.31	∢ 0.00	
	VALUES AFTER 4 ITERATIONS				

00	0	Gridworl	d Display	
	0.51 →	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

Gridworld Display					
	0.59 →	0.73 →	0.85)	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31 →	• 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

0 0	0	Gridworl	d Display		
	0.62)	0.74)	0.85)	1.00	
			•		
	0.50		0.57	-1.00	
	^		^		
	0.34	0.36 →	0.45	∢ 0.24	
	VALUES AFTER 7 ITERATIONS				

0 0	0	Gridworl	d Display	
	0.63)	0.74)	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

000	C C C Gridworld Display			
	0.64)	0.74 →	0.85 →	1.00
	• 0.55		▲ 0.57	-1.00
	• 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

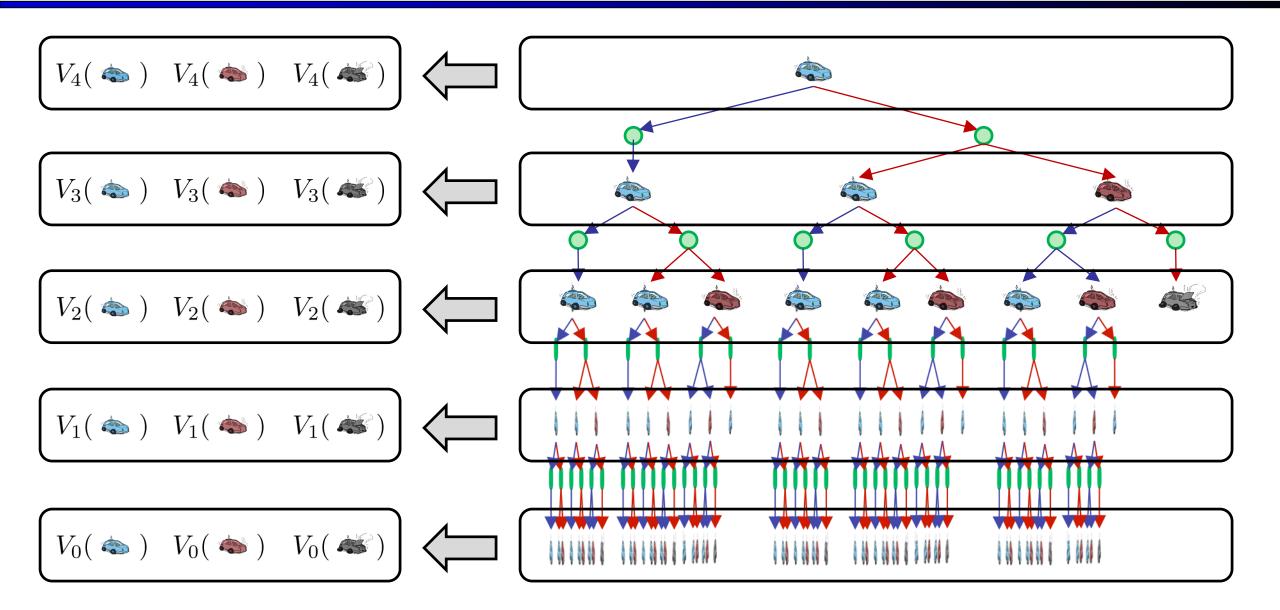
00	C C C Gridworld Display					
	0.64)	0.74 ▸	0.85)	1.00		
	▲ 0.56		• 0.57	-1.00		
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27		
	VALUES AFTER 10 ITERATIONS					

Gridworld Display					
	0.64)	0.74 →	0.85)	1.00	
	• 0.56		▲ 0.57	-1.00	
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27	
VALUES AFTER 11 ITERATIONS					

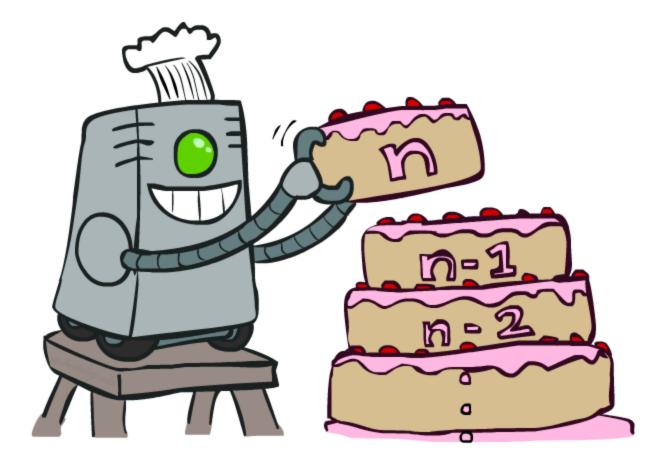
○ ○ ○ Gridworld Display						
	0.64)	0.74 ♪	0.85)	1.00		
	▲ 0.57		▲ 0.57	-1.00		
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS						

Gridworld Display					
	0.64 →	0.74 →	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
	VALUES AFTER 100 ITERATIONS				

Computing Time-Limited Values



Value Iteration

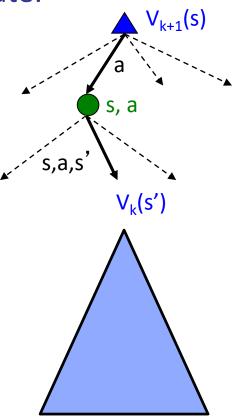


Value Iteration

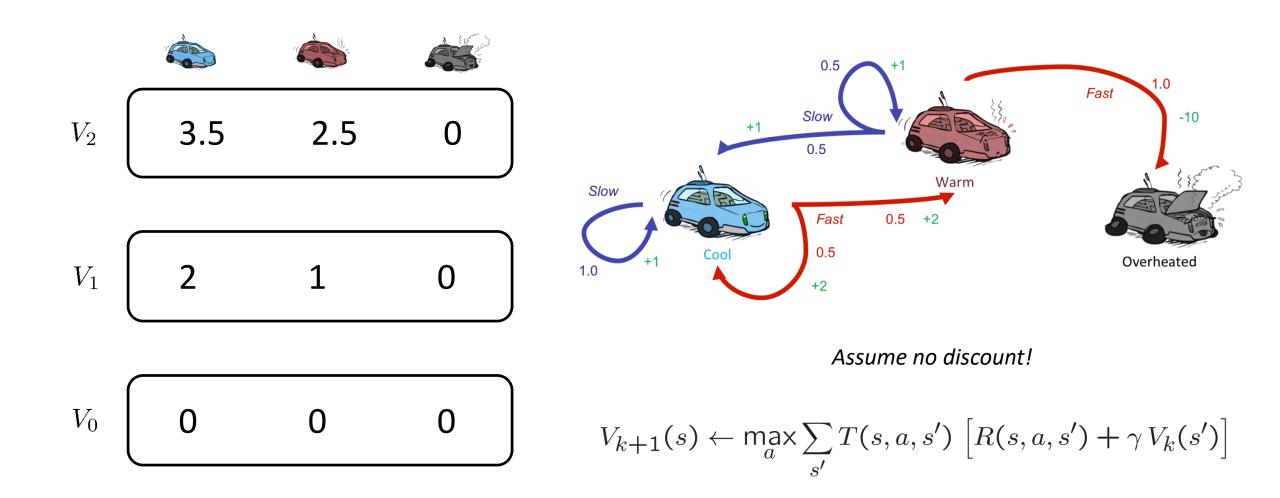
- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

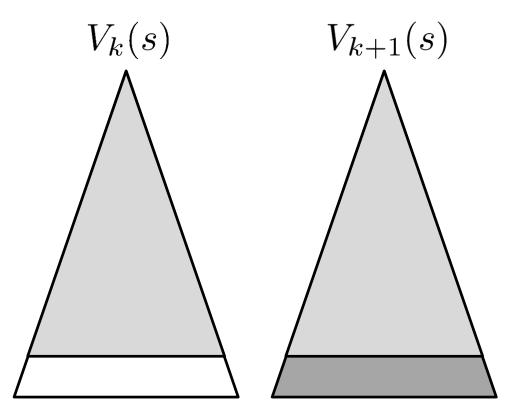


Example: Value Iteration



Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max | R | different
 - So as k increases, the values converge



Non-Deterministic Search

Today

- Solving MDPs
- Value Iteration

