
CSCI 446: Artificial Intelligence
Markov Decision Processes II

Instructor: Michele Van Dyne
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

 Solving MDPs

 Value Iteration

Recap: Defining MDPs

 Markov decision processes:
 Set of states S
 Start state s0

 Set of actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount)

 MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’

Solving MDPs

Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States

 Fundamental operation: compute the (expectimax) value of a state

 Expected utility under optimal action

 Average sum of (discounted) rewards

 This is just what expectimax computed!

 Recursive definition of value:

a

s

s, a

s,a,s’

s’

Racing Search Tree

Racing Search Tree

Racing Search Tree

 We’re doing way too much
work with expectimax!

 Problem: States are repeated
 Idea: Only compute needed

quantities once

 Problem: Tree goes on forever
 Idea: Do a depth-limited

computation, but with increasing
depths until change is small

 Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

 Key idea: time-limited values

 Define Vk(s) to be the optimal value of s if the game ends
in k more time steps
 Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

 Start with V0(s) = 0: no time steps left means an expected reward sum of zero

 Given vector of Vk(s) values, do one ply of expectimax from each state:

 Repeat until convergence

 Complexity of each iteration: O(S2A)

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Convergence*

 How do we know the Vk vectors are going to converge?

 Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

 Case 2: If the discount is less than 1

 Sketch: For any state Vk and Vk+1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

 The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

 That last layer is at best all RMAX

 It is at worst RMIN

 But everything is discounted by γk that far out

 So Vk and Vk+1 are at most γk max|R| different

 So as k increases, the values converge

Non-Deterministic Search

Today

 Solving MDPs

 Value Iteration

