CSCI 446: Artificial Intelligence
 Uncertainty and Utilities

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

- Rationality
- Human Utilities

Utilities

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
- A rational agent should chose the action that maximizes its expected utility, given its knowledge
- Questions:

- Where do utilities come from?
- How do we know such utilities even exist?
- How do we know that averaging even makes sense?
- What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

- For worst-case minimax reasoning, terminal function scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any "rational" preferences can be summarized as a utility function

- We hard-wire utilities and let behaviors emerge
- Why don't we let agents pick utilities?
- Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes

Preferences

- An agent must have preferences among:

A Prize

A Lottery

- Notation:

$$
L=[p, A ;(1-p), B]
$$

- Preference: $A \succ B$
- Indifference: $A \sim B$

Rationality

Rational Preferences

- We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity: $(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$

- For example: an agent with intransitive preferences can be induced to give away all of its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If $C>A$, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

```
Orderability
    \((A \succ B) \vee(B \succ A) \vee(A \sim B)\)
Transitivity
    \((A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)\)
Continuity
    \(A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B\)
Substitutability
    \(A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]\)
Monotonicity
    \(A \succ B \Rightarrow\)
        \((p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])\)
```


Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Human Utilities

Utility Scales

- Normalized utilities: $u_{+}=1.0, u_{-}=0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
- Compare a prize A to a standard lottery L_{p} between
- "best possible prize" u_{+}with probability p
- "worst possible catastrophe" u_ with probability 1-p
- Adjust lottery probability p until indifference: $A \sim L_{p}$

- Resulting p is a utility in $[0,1]$

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
- The expected monetary value $\mathrm{EMV}(\mathrm{L})$ is $\mathrm{p}^{*} \mathrm{X}+(1-\mathrm{p})^{*} \mathrm{Y}$
- $\mathrm{U}(\mathrm{L})=\mathrm{p}^{*} \mathrm{U}(\$ \mathrm{X})+(1-\mathrm{p})^{*} \mathrm{U}(\$ \mathrm{Y})$
- Typically, $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$
- In this sense, people are risk-averse
- When deep in debt, people are risk-prone

Example: Insurance

- Consider the lottery [0.5, \$1000; 0.5, \$0]
- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- \$400 for most people
- Difference of $\$ 100$ is the insurance premium
- There's an insurance industry because people will pay to reduce their risk
- If everyone were risk-neutral, no insurance needed!
- It's win-win: you'd rather have the $\$ 400$ and
 the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)

Example: Human Rationality?

- Famous example of Allais (1953)
- A: [0.8, \$4k; 0.2, \$0] ৫
- B: [1.0, \$3k; 0.0, \$0]
- C: [0.2, \$4k; 0.8, \$0]
- D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if $U(\$ 0)=0$, then
- $\mathrm{B}>\mathrm{A} \Rightarrow \mathrm{U}(\$ 3 \mathrm{k})>0.8 \mathrm{U}(\$ 4 \mathrm{k})$

- $C>D \Rightarrow 0.8 U(\$ 4 k)>U(\$ 3 k)$

Today

- Rationality
- Human Utilities

