
CSCI 446: Artificial Intelligence

Constraint Satisfaction Problems II

Instructor: Michele Van Dyne

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

▪ Efficient Solution of CSPs

▪ Local Search

Reminder: CSPs

▪ CSPs:
▪ Variables
▪ Domains
▪ Constraints

▪ Implicit (provide code to compute)
▪ Explicit (provide a list of the legal tuples)
▪ Unary / Binary / N-ary

▪ Goals:
▪ Here: find any solution
▪ Also: find all, find best, etc.

Backtracking Search

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ … but it’s all still NP-hard

▪ Filtering: Can we detect inevitable failure early?

▪ Ordering:

▪ Which variable should be assigned next? (MRV)

▪ In what order should its values be tried? (LCV)

▪ Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are simultaneously consistent:

▪ Arc consistency detects failure earlier than forward checking
▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Must rerun after each assignment!

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Limitations of Arc Consistency

▪ After enforcing arc
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and
not know it)

▪ Arc consistency still runs
inside a backtracking search!

What went
wrong here?

K-Consistency

K-Consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

▪ Higher k more expensive to compute

▪ (You need to know the k=2 case: arc consistency)

Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

▪ Extreme case: independent subproblems
▪ Example: Tasmania and mainland do not interact

▪ Independent subproblems are identifiable as
connected components of constraint graph

▪ Suppose a graph of n variables can be broken into
subproblems of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ Order: Choose a root variable, order variables so that parents precede children

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2) (why?)

Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

▪ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

▪ Find the smallest cutset for the graph below.

Tree Decomposition*

▪ Idea: create a tree-structured graph of mega-variables

▪ Each mega-variable encodes part of the original CSP

▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),

(WA=b,SA=r,NT=g),

…}

{(NT=r,SA=g,Q=b),

(NT=b,SA=g,Q=r),

…}

Agree: (M1,M2) 

{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
g
re

e
 o

n
 s

h
a

re
d

 v
a

rs

NT

SA


WA

 

Q

SA


NT

 

A
g
re

e
 o

n
 s

h
a

re
d

 v
a

rs

NS

W

SA


Q

 

A
g
re

e
 o

n
 s

h
a

re
d

 v
a

rs

V

SA


NS

W

 

Iterative Improvement

Iterative Algorithms for CSPs

▪ Local search methods typically work with “complete” states, i.e., all variables assigned

▪ To apply to CSPs:
▪ Take an assignment with unsatisfied constraints
▪ Operators reassign variable values
▪ No fringe! Live on the edge.

▪ Algorithm: While not solved,
▪ Variable selection: randomly select any conflicted variable
▪ Value selection: min-conflicts heuristic:

▪ Choose a value that violates the fewest constraints
▪ I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

▪ States: 4 queens in 4 columns (44 = 256 states)
▪ Operators: move queen in column
▪ Goal test: no attacks
▪ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Performance of Min-Conflicts

▪ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

▪ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

▪ CSPs are a special kind of search problem:
▪ States are partial assignments
▪ Goal test defined by constraints

▪ Basic solution: backtracking search

▪ Speed-ups:
▪ Ordering

▪ Filtering

▪ Structure

▪ Iterative min-conflicts is often effective in practice

Local Search

Local Search

▪ Tree search keeps unexplored alternatives on the fringe (ensures completeness)

▪ Local search: improve a single option until you can’t make it better (no fringe!)

▪ New successor function: local changes

▪ Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

▪ Simple, general idea:
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s bad about this approach?
▪ Complete?

▪ Optimal?

▪ What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

▪ Idea: Escape local maxima by allowing downhill moves
▪ But make them rarer as time goes on

32

Simulated Annealing

▪ Theoretical guarantee:
▪ Stationary distribution:

▪ If T decreased slowly enough,
will converge to optimal state!

▪ Is this an interesting guarantee?

▪ Sounds like magic, but reality is reality:
▪ The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a
row

▪ People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

▪ Genetic algorithms use a natural selection metaphor
▪ Keep best N hypotheses at each step (selection) based on a fitness function

▪ Also have pairwise crossover operators, with optional mutation to give variety

▪ Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

▪ Why does crossover make sense here?

▪ When wouldn’t it make sense?

▪ What would mutation be?

▪ What would a good fitness function be?

Today

▪ Efficient Solution of CSPs

▪ Local Search

