CSCI 446: Artificial Intelligence

Introduction

Instructor: Michele Van Dyne

Montana Tech

Today

What is artificial intelligence?

What can AI do?

What is this course?

Sci-Fi Al?

News in Al

- IBMs Watson winning at Jeopardy
 - computation + data
- AlphaGo, advances in the game of Go
- Autonomous driving closer, but not quite there yet
- Healthcare and Al
 - maybe good, but there are ethical questions here
- Elon Musk, Stephen Hawkings
 - concern that AI can ruin civilization, maybe replace us

News in Al

Neural network for naming paint colors

What is AI?

The science of making machines that:

Rational Decisions

We'll use the term **rational** in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the **utility** of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

Maximize Your Expected Utility

What About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren't as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"
- Lessons learned from the brain: memory and simulation are key to decision making

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "AI Winter"
- 1990—2012: Statistical approaches + subfield expertise
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2012—: Excitement: Look, Ma, no hands again?
 - Big data, big compute, neural networks
 - Some re-unification of sub-fields
 - Al used in many industries

What Can Al Do?

Quiz: Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- Prive safely down Park St. as the bars are closing?
- ✓ Buy a week's worth of groceries on the web?
- **X** Buy a week's worth of groceries at Safeway?
- P Discover and prove a new mathematical theorem?
- X Converse successfully with another person for an hour?
- **P**erform a surgical operation?
- ✓ Put away the dishes and fold the laundry?
- ▼ Translate spoken Chinese into spoken English in real time?
- **X** Write an intentionally funny story?

Unintentionally Funny Stories

- One day Joe Bear was hun Irving Bird where some ho there was a beehive in the the oak tree. He ate the b
- Henry Squirrel was thirsty. river bank where his good Henry slipped and fell in th The End.
- Once upon a time there w crow was sitting in his tree that he was holding the picture the cheese. The fox walke

Natural Language

- Speech technologies (e.g. Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems

Demo: NLP – ASR tvsample.avi

Natural Language

- Speech technologies (e.g. Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems

- Language processing technologies
 - Question answering
 - Machine translation

- Web search
- Text classification, spam filtering, etc...

Vision (Perception)

- Object and face recognition
- Scene segmentation
- Image classification

Images from Erik Sudderth (left), wikipedia (right)

Demo1: VISION – lec_1_t2_video.flv

Demo2: VISION – lec_1_obj_rec_0.mpg

Vision (Perception)

PIXELS -> INFO/DECISION E.g.:

Face detection and recognition

Source: TechCrunch

Semantic Scene Segmentation

[Caesar et al, ECCV 2017]

3-D Understanding

[DensePose]

Robotics

Demo 1: ROBOTICS – soccer.avi

Demo 2: ROBOTICS – soccer2.avi

Demo 3: ROBOTICS – gcar.avi

Demo 4: ROBOTICS – laundry.avi

Demo 5: ROBOTICS – petman.avi

Robotics

- Part mech. eng.
- Part Al
- Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Images from UC Berkeley, Boston Dynamics, RoboCup, Google

Game Playing

- Classic Moment: May, '97: Deep Blue vs. Kasparov
 - First match won against world champion
 - "Intelligent creative" play
 - 200 million board positions per second
 - Humans understood 99.9 of Deep Blue's moves
 - Can do about the same now with a PC cluster.
- Open question:
 - How does human cognition deal with the search space explosion of chess?
 - Or: how can humans compete with computers at all??
- 1996: Kasparov Beats Deep Blue
 "I could feel --- I could smell --- a new kind of intelligence across the table."
- 1997: Deep Blue Beats Kasparov
 "Deep Blue hasn't proven anything."
- Huge game-playing advances recently, e.g. in Go!

Logic

Logical systems

- Theorem provers
- NASA fault diagnosis
- Question answering

Methods:

- Deduction systems
- Constraint satisfaction
- Satisfiability solvers (huge advances!)

Al is starting to be everywhere...

- Applied AI involves many kinds of automation
 - Scheduling, e.g. airline routing, military
 - Route planning, e.g. Google maps
 - Medical diagnosis
 - Web search engines
 - Spam classifiers
 - Automated help desks
 - Fraud detection
 - Product recommendations
 - ... Lots more!

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Pac-Man as an Agent

Course Topics

- Part I: Intelligence from Computation
 - Fast search / planning
 - Constraint satisfaction
 - Adversarial and uncertain search
- Part II: Intelligence from Data
 - Bayes' nets
 - Decision theory
 - Machine learning
 - Logic
- Throughout: Applications
 - Natural language, vision, robotics, games, ...

Summary

What is artificial intelligence?

What can AI do?

What is this course?

