
Object Oriented Design

Fundamentals of Computer Science 

zombie[0]

zombie[2]
zombie[5]

zombie[1]
zombie[3]

zombie[4]

There’s more…?



Outline

 Object Oriented Design

 Identify the Classes

 Identify what Information each Class Needs

 Identify what each Class Needs to Do



Software Development Life Cycle

3

1. Understand the Problem = Requirements 
Analysis

2. Work out the Logic = Design

3. Convert it to Code = Implementation

4. Test/Debug

5. Maintenance

Today we will talk about requirements 
analysis and object oriented design.



What are the Nouns?

 You have been hired to automate bank operations 
for a local credit union. They have told you that 
their business operates as follows:

 Customers can open accounts. They can make deposits and 
withdrawals and can close accounts also. On some accounts 
interest needs to be added, and sometimes fees are deducted.

 All employees can help customers with deposits and 
withdrawals. Only some employees are authorized to open 
and close accounts.

4



From Last Year…



UML Diagram

-Name
-SSN
-Address
-Phone
-Email
-Preferred method of contact

Person

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active
-Hire Date
-Position
-Salary
-Direct Deposit

Employee

-Debit Card
-Accounts LIst
-Account Length (Time)
-Account Balances
-Ranking
-Loan?
-Credit Score
-Type (Person/Corp.)
-Password/PIN
-Bill Autopay?

Customer

+Assign Acct Number()

-Balance
-Transaction History
-Authorized Parties / Levels
-Open/Closed
-Date Opened
-Who Opened
-Acct Number

Account

-Type
-Interest Applied
-Fees
-Name of Account
-Minimum Balance
-Overdraft Fee
-Stipulations for Withdrawal
-Max Amount
-Num Withdrawals Allowed

Product

-Date
-Type (Auto/Cash/Check)
-Amount
-Account

Transaction

-Origin
-Approve or Not

Deposit

-Unauthorized Attempts

Withdrawal

-End11

-End2

*

-Balance
-Rate
-Calculation Method
-Loan or Savings
-Date
-Account

Interest

-Type
-Account
-Amount
-Date

Fee

-End3

1

-End4

* -End5

1

-End6

*

-End7

1

-End8

*

Attributes/State

Methods/Behavior

Class Name

Inheritance (is-a)

Composition (has-a)



Simplifying the Design – Classes and Attributes

 Look for repetition of data

 Try to have each piece of data in only one place

 Look for “modifiers”

 These might indicate the attribute should be in a different class

 e.g. Under Customer, we have “Account Length (Time)” and 
“Account Balance”

 Since they both reference account, they should probably be in 
the Account class

 Walk through each attribute and see if it makes 
sense

 Does it really applies to that class



Modified UML

-Name
-SSN
-Address
-Phone
-Email
-Preferred method of contact

Person

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active
-Hire Date
-Position
-Salary
-Direct Deposit

Employee

-Debit Card
-Accounts List
-Ranking
-Loan?
-Credit Score
-Type (Person/Corp.)
-Password/PIN
-Bill Autopay?

Customer

+Assign Acct Number()

-Balance
-Transaction History
-Authorized Parties / Levels
-Open/Closed
-Date Opened
-Who Opened
-Acct Number

Account

-Type
-Interest Applied
-Fees
-Name of Account
-Minimum Balance
-Overdraft Fee
-Stipulations for Withdrawal
-Max Amount
-Num Withdrawals Allowed

Product

-Date
-Type (Auto/Cash/Check)
-Amount
-Account
-Origin
-Approve or Not

Transaction

-End11

-End2

*

-Rate
-Calculation Method

Interest

-Type
-Amount

Fee

-End3

1

-End4

*

-End5

1

-End6

*

-End7

1 -End8

*

Removed account data
Made interest and fees part of product

Removed deposit and withdrawal



Add Behaviors - What are the Verbs?

 You have been hired to automate bank operations 
for a local credit union. They have told you that 
their business operates as follows:

 Customers can open accounts. They can make deposits and 
withdrawals and can close accounts also. On some accounts 
interest needs to be added, and sometimes fees are deducted.

 All employees can help customers with deposits and 
withdrawals. Only some employees are authorized to open 
and close accounts.

9



UML with Behaviors

+Create()
+Read()
+Update()
+Delete()

-Name
-SSN
-Address
-Phone
-Email
-Preferred method of contact

Person

-Open Accounts?
-Num of Customers
-Hours of Operation
-Time Active
-Hire Date
-Position
-Salary
-Direct Deposit

Employee

+Assign Customer ID()

-Debit Card
-Accounts List
-Ranking
-Loan?
-Credit Score
-Type (Person/Corp.)
-Password/PIN
-Bill Autopay?

Customer

+Assign Acct Number()
+Create()
+Read()
+Update()
+Delete()

-Balance
-Transaction History
-Authorized Parties / Levels
-Open/Closed
-Date Opened
-Who Opened
-Acct Number

Account

+Create()
+Read()
+Update()
+Delete()

-Type
-Interest Applied
-Fees
-Name of Account
-Minimum Balance
-Overdraft Fee
-Stipulations for Withdrawal
-Max Amount
-Num Withdrawals Allowed

Product

+Create()
+Read()
+Update()
+Delete()

-Date
-Type (Auto/Cash/Check)
-Amount
-Account
-Origin
-Approve or Not

Transaction -End11

-End2

*

-Rate
-Calculation Method

Interest

-Type
-Amount

Fee

-End3

1

-End4

*

-End5

1

-End6

*

-End7

1
-End8

*



More Design

 Use Cases

 Walk through typical uses of your software and make sure the 
state and behavior support those cases

 Application Program Interface – API

 Write an API for the interface to each of your classes

 For each method, define:

 Name

 Input Parameters

 Return Values

 Define data types for each attribute

 Might mean splitting a single attribute into several



Implementation

 Once we are happy with our class 
definitions, then we get to write some 
code!!



Summary

 Object Oriented Design

 Identify the classes

 Identify what information each class needs

 Identify what each class needs to do

 Identify use cases

 Define the API

 Define the instance variables

 Finally – write some code!


