TESTING AND DEBUGGING

Buuuuugs...

Fundamentals of Computer Science |

Outline
- Debugging

- Types of Errors
- Syntax Errors
- Semantic Errors
- Logic Errors

- Preventing Bugs

- Have a plan before coding, use good style

- Learn to trace execution
- On paper, with print statements, using the debugger

- Explain it to a teddy bear
- Incremental development

Debugging

- Majority of program development time:
- Finding and fixing mistakes! a.k.a. bugs
- It's not just you: bugs happen to all programmers

9/4

D& Ondkaw shakol : {/-1700 ?.032 gyy 0L5
/000 " sw}& "am}am-/ 576 | - 9.087 ¥YC P95 ok
13w (030 Me ~me EFSo9rtd, s=fad) 9’6/>?15057(a.)
03y Pro» 2. 130776705
Cowedk 2u3067ewS 1‘, :
A 2 < 033*4;..&1;1.,.,./ x,‘.»] Jeod” [Ny |

f

e e new 4t |

1709 .S.Ia-t'-f‘-c‘ ‘.s;h:-}fgjf";(s,lhe c—‘\eck) 3 "
ﬁl‘—« : |

?

1S25 | PLo».—“th [T\ "n; TEeh o) |

VCeloy*70. ?q .
=3 (I';\oﬁ)u\ \"Q\q § ‘

e Q‘r\r_s'f O\d'ua case .o-{' bu:l Lcm.‘ {oqno\

Hyve | et L& Bras L LI R

Debugging

- Computers can help find bugs
- But: computer can't automatically find all bugs! Vielets are Biue

- Computers do exactly what you ask e O
- Not necessarily what you want

- There is always a logical explanation!
- Make sure you saved & compiled last change

== “As soon as we started programming, we found out to our surprise that it

| wasn't as easy to get programs right as we had thought. Debugging had to be
= discovered. | can remember the exact instant when | realized that a large part
of my life from then on was going to be spent in finding mistakes in my own
programs.”

-Maurice Wilkes

“There has never been an unexpectedly short
debugging period in the history of computers.”
-Steven Levy

Preventing Bugs

- Have a plan
- Write out steps in English before you code

- Write comments first particularly
before tricky bits

- Use good coding style

- Good variable names
- "Name variables as if your first born child"

- If variable is called area it should hold an area!
- Split complicated stuff into manageable steps
- ()’s are free, force order of operations you want

- Carefully consider loop bounds
- Listen to Idle (IDE) feedback

PREVENTING BUGS

Incremental Development

- Split development into stages:

- Test thoroughly after each stage
- Don't move on until it's working!
- Bugs are (more) isolated to the part you've just been working on
- Prevents confusion caused by simultaneous bugs in several parts

Finding Bugs

- How to find bugs

- Add debug print statements
- Print out state of variables, loop values, etc.
- Remove before submitting
- Use debugger in your IDE
- Talk through program line-by-line
- Explain it to a:
* Programming novice
* Rubber duckie

+ Teddy bear
- Potted plant

Debugging Example

- Problem:

— For integer N > 1, compute its prime factorization
- 98 =2x7?
17 =17
154 =2x7x11
16,562 =2 x 72 x 132
3,757,208 = 23 x 7 132 x 397
- 11,111,111,111,111,111 = 2,071,723 x 5,363,222,357
— Possible application: Break RSA encryption
= Factor 200-digit numbers
= Used to secure Internet commerce

A Simple Algorithm

- Problem:
- For integer N > 1, compute its prime factorization

- Algorithm:
- Starting with i1=2
- Repeatedly divide N by i as long as it evenly divides, output i every time
it divides
- Increment |
- Repeat

DEBUGGING

16562 2 Example Run
8281

8281

8281

8281

8281 77
169

169

169

169

169

169 1313
1

1

O 00 N oo Lt B W N

e N = T o
A W N R O

10

Buggy Factorization Program

import sys

n = int(sys.argv[1])

for i in range (0, n)
while n % i == 0O:
print(str(i), end=" ")
n=n/i

This program has many bugs!

11

DEBUGGING

Debugging: Syntax Errors

import sys
n = int(sys.argv[1]

for i in range (O,
while n % i == O:
- Syntax errors

int(str(i), end=" ")
n /i
- lllegal Python program

- Usually easily found and fixed

12

Debugging: Semantic Errors

import sys
Need to start

at 2 since O

n = int(sys.argv[1]) and 1 cannot
for i in range (@f‘rr)'—/ be factors.
while n % 1 == 0O:

Q Q 1]] 1 1]
print(str(i), end =)
N = n / 1 |% python Factorsl.py 98
Traceback (most recent call last):

File "Factorsl.py", line 5, in <module>

while n % i == 0:
ZeroDivisionError: integer division or
modulo by zero

- Semantic error
- Legal but wrong Python program
- Run program to identify problem

13

Debugging: Even More Problems

import sys

n = int(sys.argv[1])
for i in range (2, n):
while n % 1 == O:
print(str(i), end = " ")
n=n/i

% python Factors2.py 5

£ No output???

DEBUGGING

Debugging: Adding Trace Print Statement

% python Factors3.py 5
TRACE 2 5

. TRACE 3 5
impor
HelFiE S TRACE 4 5

n = int(sys.argv[1])
for i in range (2, n):
while n % i ==

print(str(i), end = " ")
n=n/1i i in for-loop
print("TRACE " + str(i) + " " + str(n)) should go up

ton

15

B e
Success?

import sys
Fixes the "off-by-

one" error in the
loop bounds.

n = int(sys.argv[1])
for i in range (2, n+l):
while n % i == 0O:
print(str(i), en
n=n/1i1i

% pyiMon Factors4.py 5

% python Factors4.py 6
2 3

% python Factors4.py 98
27 7

% python Factors4.py 3757208
2 27 13 13 397

16

Correct, But Too Slow

import sys

n = int(sys.argv[1])
for i in range (2, n+l):
while n % 1 ==
print(str(i), en
n=n/i

% python Factors4.py 11111111
11 73 101 137

% python Factors4.py 11111111111
21649 51329

% python Factors4.py 11111111111111111
2071723 5363222357

17

emEERA
Fixed Faster Version

import sys

n = int(sys.argv[1l])

i=2
while i”*2 <= n:

% python Factors5.py 98
27 7

% python Factors5.py 11111111
11 73 101 137

% python Factors5.py 11111111111
21649 513239

% python Factors5.py 11111111111111
11 239 4649 909091

% python Factors5.py 11111111111111111
2071723 5363222357

Factors: Analysis

- How large an integer can | factor?

% python Factors.py 3757208
2 227 13 13 397

% python Factors.py 9201111169755555703
9201111169755555703

3
6
9
12
15

18

instant instant

0.15 seconds instant

77 seconds instant

21 hours * 0.16 seconds
2.4 years” 2.7 seconds
2.4 millennia * 92 seconds

* estimated

Preventing Bugs

- Have a plan
- Write out steps in English before you code

- Write comments first particularly
before tricky bits

- Use good coding style

- Good variable names
- "Name variables as if your first born child"

- If variable is called area it should hold an area!
- Split complicated stuff into manageable steps
- ()’s are free, force order of operations you want

- Carefully consider loop bounds
- Listen to Idle (IDE) feedback

20

PREVENTING BUGS

Incremental Development

- Split development into stages:

- Test thoroughly after each stage
- Don't move on until it's working!
- Bugs are (more) isolated to the part you've just been working on
- Prevents confusion caused by simultaneous bugs in several parts

21

Summary

- Debugging
- Types of Errors
- Syntax Errors
- Semantic Errors
- Logic Errors
- Preventing Bugs
- Have a plan before coding, use good style

- Learn to trace execution
- On paper, with print statements, using the debugger

- Explain it to a teddy bear
- Incremental development

- Test, Test, Test!!

