
BASIC INPUT/OUTPUT

Fundamentals of Computer Science I

Outline: Basic Input/Output

 Screen Output

 Keyboard Input

 Command Line Input

 File Input

Simple Screen Output

print("The count is " + str(count))

• Outputs the sting literal "The count is "

• Followed by the current value of the variable count,
converted to a string.

• We've seen several examples of screen output
already.
• print() is a function in python

• The “stuff” inside the parenthesis are arguments to that function

Screen Output

• The line continuation operator (\) is useful when everything

does not fit on one line.
print("Lucky number = " + str(13) + \

" Secret number = " + str(42))

• You don’t want to break the line in the middle of s string

though.

Screen Output

• To get text to print out on the same line as the previous
print, use:

print("One, two, ", end="")

print(" buckle my shoe. ", end="")

print(" Three, four,")

print(" shut the door.")

Pretty Text Formatting

• printf-style formatting

• Common way to nicely format output

• Present in many programming languages

• Java, C++, Perl, PHP, ...

• Use a special format language:

• Format string with special codes

• One or more variables get filled in

• In Python:

print("text %code" %(value))

6

Formatted Printing

print integer and float value

print("Enrollment: %2d, Average Score: %5.2f" %(52, 78.523))

print integer and float variables

enroll = 52

score = 78.523

print("Enrollment: %2d, Average Score: %5.2f" %(enroll, score))

print two integer value

print("Total students: %3d, Monday Class: %2d" %(52, 26))

print exponential value

print("%10.3E"% (356.08977))

Floating-Point Formatting

8

import math

f = 0.123456789

%f code is used with floating point variables
%f defaults to rounding to 6 decimal places
\n prints a newline character
print("f is about %f\n" %(f))

Number of decimal places specified by .X
Output is rounded to that number of places
print("PI is about %.1f\n" %(math.pi))
print("PI is about %.2f\n" %(math.pi))
print("PI is about %.3f\n" %(math.pi))
print("PI is about %.4f\n" %(math.pi))

%e code outputs in scientific notation
.X specifies number of significant figures
C = 299792458.0
print("C = %e\n" %(C))
print("C = %.3e\n" %(C))

f is about 0.123457

PI is about 3.1

PI is about 3.14

PI is about 3.142

PI is about 3.1416

C = 2.997925e+08

C = 2.998e+08

\n means line feed

Integer Formatting

9

%d code is for integer values
Multiple % codes can be used in a single print()
power = 1
for i in range(0, 8):

print("%d = 2^%d" %(power, i))
power = power * 2

A number after the % indicates the minimum width
Good for making a nice looking tables of values
power = 1
for i in range(0, 8):

print("%5d = 2^%d" %(power, i))
power = power * 2

1 = 2^0
2 = 2^1
4 = 2^2
8 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
128 = 2^7

1 = 2^0
2 = 2^1
4 = 2^2
8 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6

128 = 2^7

You can have multiple % codes that

are filled in by a list of parameters to

print()

Minimum width of this field in the output.

Python will pad with whitespace to reach this

width (but can exceed this width if necessary).

Flags

10

Same table, but left justify the first field
power = 1
for i in range(0, 8):

print("%-5d = 2^%d" %(power, i))
power = power * 2 1 = 2^0

2 = 2^1
4 = 2^2
8 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
128 = 2^7

- flag causes this field to be left justified

Text Formatting

11

Characters can be output with %c, strings using %s
name = "Bill"
grade = 'B'
print("%s got a %c in the class." %(name, grade))

Bill got a B in the class.

This prints the same thing without using printf
print(name + " got a " + grade + " in the class.")

An equivalent way to print the same thing out using good old concatenation.

And so does this
str = name + " got a " + grade + " in the class."
print(str)

Creating Formatted Strings

• Formatted String creation

• You don't always want to immediately print formatted text to

standard output

• Save in a string variable for later use

12

Formatted Strings can be created and added to
lines = ""
for i in range(0, 4):

lines += "Random number %d = %.2f\n" %(i, random.random())
print(lines)

Random number 0 = 0.54
Random number 1 = 0.50
Random number 2 = 0.39
Random number 3 = 0.64

The Format Specifier

13

% [flags][width][.precision]type

Type is the only required

part of specifier. "d" for

an integer, "f" for a

floating-point number

Sets the number

of decimal places,

don't forget the .

Minimum number of character

used, but if number is longer

it won't get cut off

Special formatting

options like

making left

justified, etc.

print("%-6.1f" %(42.0))

%[flags][width][.precision]type

print Gone Bad

• Format string specifies:

• Number of variables to fill in

• Type of those variables

• With great power comes great responsibility

• Format must agree with #/types of arguments

• Runtime error otherwise

14

Runtime error %f expects a number
print("crash %f\n" %("Hello"))

Runtime error, %d expects a number
#print("crash %d\n" %("Hello"))

Runtime error, not enough arguments
#print("crash %d %d\n" %(2))

print Puzzler

15

Letter Output

A 4242

B 4242.00

C 4.242e+03

D 4,242

E 4242.000000

Code Letter

print("%f" %(4242.00))

print("%d" %(4242))

print("%.2f" %(4242.0))

print("%.3e" %(float(4242)))

print("%-d" %(4242))

Code #

print("%d%d" %(42, 42))

print("%d+%d" %(42, 42))

print("%d %d" %(42))

print("%8d" %(42))

print("%-8d" %(42))

print("%d" %(42.0))

Output

1 42+42

2 4242

3 42

4 42

5 runtime error

6 4242.00

E

A

B

C

A

2

1

5

3

4

4

Interactive Keyboard Input

• Python has reasonable facilities for handling

keyboard input.

• Use the input() command

• If you don’t save to a variable, the input gets lost

name = input("Enter your name: ")

• Whatever the user types before pressing <Enter> gets

stored in the variable called name

variable command prompt string

Interactive Keyboard Input

• Input comes in as a string

number = input(“Enter your favorite number: ")

• If you want to use the incoming value as numeric, you

must convert it

number = int(input(“Enter your favorite number: "))

Or:

number = float(input(“Enter your favorite number: "))

Command Line Input

• Input comes from the command line when you run
the program
• Run…customized in the Idle shell

• From the Command window

• Input data comes into the list of strings, sys.argv
• If you don’t save the data to variable(s), the data is
lost

• You must import sys before you can access the list

import sys

program = sys.argv[0]
number = sys.argv[1]

Command Line Input

• Input comes in as a list of strings

import sys

program = sys.argv[0]

number = sys.argv[1]

• If you want to use the incoming value as numeric, you must
convert it

number = int(sys.argv[1])

Or:

number = float(sys.argv[1])

Input from Files

• What if..

• There are too many values for a user to type interactively?

• These values are stored in a text file?

• Can our program read these values from a file?

• Yep! ☺

Python File Input

• Step 1: We need to open the file:

with open(fname, 'r') as f:
• fname is a string for the file name

• f is just any variable that you want to use

• ‘r’ means we want to read the file (as opposed to writing it)

f = open(fname, 'r')

• The first approach will help you walk through the whole file

• The second approach just opens it and lets you figure things out

• Step 2: We need to read in data from the file (and save
the data somehow)

• Step 3: Once we are done with the file, we need to
close it:
f.close()

File Input
import sys

sum = 0.0

count = 0

Check if we need to print out command line help

if len(sys.argv) < 2:

print("AvgNumsFile <filename>")

else:

Open up the text file for reading

fname = sys.argv[1]

with open(fname, 'r') as f:

Keep going as long as there is more text in the file

for line in f:

Translate that line to a float

sum += float(line)

count += 1

f.close()

Print out the final average

print(sum / count)

As an example, here we are
reading in a file containing many
numbers and finding their
average

Run this with squares.txt as the
command line argument.

What’s in squares.txt?
0
1
4
9
16
25
36
49
64
81
100
121
144
169 … 1000 entries of squared numbers

File Input
import sys

sum = 0.0

count = 0

Check if we need to print out command line help

if len(sys.argv) < 2:

print("AvgNumsFile <filename>")

else:

Open up the text file for reading

fname = sys.argv[1]

f = open(fname, 'r')

line = f.readline().strip()

Keep going as long as there is more text in the file

while line != "":

Translate that line to a float

sum += float(line)

count += 1

Read the next line

line = f.readline().strip()

f.close()

Print out the final average

print(sum / count)

Same functionality as last
program but opening the file in
a different way.

Run this with squares.txt as the
command line argument.

Why the .strip() after
f.readline()?

Whitespace characters are also
in the file – newline characters
that make each number be on a
new line in the file. We need to
get rid of these.

Let’s Try Another Type of File

• Configuration files are often used to initialize software

programs.

• Might hold preferences for how you want your text editor to look

• Maybe levels in a game

• These are all text files, so we can open them up and read

them

Configuration File: hitchhiker.txt

stars.jpg

dont_panic_40.png 0.5 0.5 0.035 100

6

asteroid_small.png 0.1 0.1 0.018 -0.002 -0.003

asteroid_medium.png 0.2 0.2 0.030 0.002 -0.003

asteroid_large.png 0.3 0.3 0.065 -0.002 0.003

asteroid_small.png 0.4 0.4 0.018 -0.001 -0.004

asteroid_medium.png 0.6 0.6 0.030 0.002 -0.003

asteroid_large.png 0.7 0.7 0.065 -0.0035 0.0025

Hitchhikers Guide to the Galaxy: Avoid a bunch of asteroids

<background image>

<player image> <player x-position> <player y-position> <player radius> <player speed factor>

<number enemies>

<enemy0 image> <enemy0 x-position> <enemy0 y-position> <enemy0 x-velocity> <enemy0 y-velocity>

<enemy1 image> <enemy1 x-position> <enemy1 y-position> <enemy1 x-velocity> <enemy1 y-velocity>

...

Code to Read Configuration File
• To open and read just the first two lines of the file, we might use:

Open up the text file for reading
fname = sys.argv[1]
with open(fname, 'r') as f:

Read in the first line of text
line = f.readline().split()
Translate that line to a string
bg = picture.Picture(line[0])
line = f.readline().split()
playerImg = line[0]
player = picture.Picture(playerImg)
playerX = float(line[1])
playerY = float(line[2])
playerRadius = float(line[3])
playerSpeed = int(line[4])

f.close()

Why the .split() after
f.readline()?

Many lines in the file contain
more than one value. We can
use split to build a list of strings
(remember lists?) from each
line and then pull items off the
list to use in our program. Since
.split() splits on whitespace, it
also gets rid of those pesky
newline characters so we don’t
need to use .strip().

Summary: Basic Input/Output

 Screen Output

 Keyboard Input

 Command Line Input

 File Input

