
Searching and sorting

CSCI 135: Fundamentals of Computer Science • Keith Vertanen • Copyright © 2013

Sequential search
• Sequential search

– Scan through array, looking for key.

– Search hit: return array index.

– Search miss: return -1.

public static int search(String key, String[] a)
{
 for (int i = 0; i < a.length; i++)
 if (a[i].compareTo(key) == 0)
 return i;
 return -1;
}

2

Search client, exception filter
• Exception filter

– Read sorted list of strings from a whitelist file

– Print strings from standard input not in whitelist

 public static void main(String [] args)
{
 In in = new In(args[0]);
 String s = in.readAll();
 String[] words = s.split("\\s+");
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (search(key, words) == -1)
 System.out.println(key);
 }
}

% more test.txt
bob@office
carl@beach
marvin@spam
bob@office
bob@office
mallory@spam
dave@boat
eve@airport
alice@home

% more whitelist.txt
alice@home
bob@office
carl@beach
dave@boat

% java Whitelist whitelist.txt < test.txt
marvin@spam
mallory@spam
eve@airport

3

Searching challenge 1
• Problem: A credit card company needs to whitelist

10 million customer account numbers, processing
10,000 transactions per second

• Question: Using sequential search, what kind of
computer is needed?

A. Toaster.

B. Cell phone.

C. Your laptop.

D. Supercomputer.

E. Google server farm.

4

Binary search
• Main idea

– Sort the array (stay tuned)

– Play "20 questions" to determine
index with a given key

– Examples: Dictionary, phone book,
book index, credit card numbers,
…

• Binary search

– Examine the middle key.

– If it matches, return its index.

– Otherwise, search either the left
or right half.

5

Binary search: Java implementation
• Invariant

– Algorithm maintains: a[lo] key a[hi-1]

• Java library implementation: Arrays.binarySearch()

 public static int search(String key, String[] a)
{
 return search(key, a, 0, a.length);
}

public static int search(String key, String[] a, int lo, int hi)
{
 if (hi <= lo) return -1;
 int mid = lo + (hi - lo) / 2;
 int cmp = a[mid].compareTo(key);
 if (cmp > 0) return search(key, a, lo, mid);
 else if (cmp < 0) return search(key, a, mid+1, hi);
 else return mid;
}

6

“I was amazed: given ample time, only about ten percent of professional programmers were able to
get this small program right. But they aren't the only ones to find this task difficult: in the history in
Section 6.2.1 of his Sorting and Searching, Knuth points out that while the first binary search was
published in 1946, the first published binary search without bugs did not appear until 1962.”

– Jon Bentley, Programming Pearls

Binary search: mathematical analysis
• Analysis, binary search array of size N

– Do one compare

– Then binary search in an array of size N/2

– N N/2 N/4 N/8 … 1

• Question: How many times can you divide a number
by 2 until you reach 1?

• Answer: log2N 1

2 1

4 2 1

8 4 2 1

16 8 4 2 1

32 16 8 4 2 1

64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

 512 256 128 64 32 16 8 4 2 1

1024 512 256 128 64 32 16 8 4 2 1
7

Searching challenge 2
• Problem: A credit card company needs to whitelist

10 million customer account numbers, processing
10,000 transactions per second

• Question: Using binary search, what kind of
computer is needed?

A. Toaster.

B. Cell phone.

C. Your laptop.

D. Supercomputer.

E. Google server farm.

But binary search
requires a sorted list!

8

Sorting
• Sorting problem

– Rearrange N items in ascending order

• Applications

– Statistics, databases, data compression, bioinformatics,
computer graphics, scientific computing, ...

Hanley

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

Hauser

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

9

• Insertion sort

– Brute-force sorting solution

– Move left-to-right through array

– Exchange next element with larger elements to its left,
one-by-one

Insertion sort

10

• Insertion sort

– Brute-force sorting solution

– Move left-to-right through array

– Exchange next element with larger elements to its left,
one-by-one

Insertion sort

11

Insertion sort: Java implementation

12

public class Insertion
{
 public static void sort(String[] a)
 {
 for (int i = 1; i < a.length; i++)
 for (int j = i; j > 0; j--)
 if (a[j-1].compareTo(a[j]) > 0)
 exch(a, j-1, j);
 else break;
 }

 private static void exch(String[] a, int i, int j)
 {
 String swap = a[i];
 a[i] = a[j];
 a[j] = swap;
 }
}

Insertion sort: empirical analysis
• Number of compares depends on input family

– Descending: ~ N 2 / 2

– Random: ~ N 2 / 4

– Ascending: ~ N

0.001

0.1

10

1000

100000

1000 10000 100000 1000000

C
om

pa
rs

io
ns

 (
m

il
li
on

s)

Input Size

Descendng

Random

Ascending

13

Insertion sort: mathematical analysis
• Worst case [descending]

– Iteration i requires i comparisons.

– Total = (0 + 1 + 2 + ... + N-1) ~ N 2 / 2 compares.

• Average case [random]

– Iteration i requires i / 2 comparisons on average.

– Total = (0 + 1 + 2 + ... + N-1) / 2 ~ N 2 / 4 compares

E F G H I J D C B A

A C D F H J E B I G

i

i

14

Sorting challenge 1
• Problem: A credit card company sorts 10 million

customer account numbers, for use with binary
search.

• Question: Using insertion sort, what kind of
computer is needed?

A. Toaster.

B. Cell phone.

C. Your laptop.

D. Supercomputer.

E. Google server farm.

15

Insertion sort: lesson
• Lesson:

– Even a supercomputer can't rescue a bad algorithm

1 second

1 day

Million

instant

instant

Thousand Billion
Comparisons
per second

Computer

3 centuries 107 laptop

2 weeks 1012 super

16

Moore's Law
• Moore's law

– Transistor density on a chip doubles every 2 years

• Variants

– Memory, disk space, bandwidth, computing power per $

http://en.wikipedia.org/wiki/Moore's_law 17

Moore's law and algorithms
• Quadratic algorithms do not scale with technology

– New computer may be 10x as fast.

– But, has 10x as much memory so problem may be 10x bigger

– With quadratic algorithm, takes 10x as long!

• Lesson

– Need linear (or linearithmic) algorithm to keep pace with
Moore's law

“Software inefficiency can always outpace

 Moore's Law. Moore's Law isn't a match

 for our bad coding.” – Jaron Lanier

18

Mergesort
• Mergesort algorithm

– Divide array into two halves

– Recursively sort each half

– Merge two halves to make sorted whole

19

Merging
• Merging

– Combine two pre-sorted lists into a sorted whole.

• How to merge efficiently?

– Use an auxiliary array

20

Merging
• Merging

– Combine two pre-sorted lists into a sorted whole.

• How to merge efficiently?

– Use an auxiliary array

21

String[] aux = new String[N];
// merge into auxiliary array
int i = lo;
int j = mid;
for (int k = 0; k < N; k++)
{
 if (i == mid) aux[k] = a[j++];
 else if (j == hi) aux[k] = a[i++];
 else if (a[j].compareTo(a[i]) < 0) aux[k] = a[j++];
 else aux[k] = a[i++];
}

// copy back
for (int k = 0; k < N; k++)
 a[lo + k] = aux[k];

Mergesort: Java implementation

public class Merge
{
 public static void sort(String[] a)
 {
 sort(a, 0, a.length);
 }

 // Sort a[lo, hi).
 public static void sort(String[] a, int lo, int hi)
 {
 int N = hi - lo;
 if (N <= 1) return;

 // recursively sort left and right halves
 int mid = lo + N/2;
 sort(a, lo, mid);
 sort(a, mid, hi);

 String[] aux = new String[N];
 // merge sorted halves (see previous slide)
 }
}

22

• Analysis

– To mergesort array of size N, mergesort two subarrays
of size N / 2, and merge them together using N compares

T(N)

T(N / 2) T(N / 2)

T(N / 4) T(N / 4) T(N / 4) T(N / 4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2 (N / 2)

4 (N / 4)

N / 2 (2)

.

.

.

log2 N

N log2 N

Assume N is a power of 2

Mergesort: mathematical analysis

23

Mergesort: mathematical analysis
• Mathematical analysis

• Validation, theory agrees with observations

N log2 N average

1/2 N log2 N

N log2 N

comparisons analysis

worst

best

1,279 million 1,216 million 50 million

485 million 460 million 20 million

133 thousand

predicted actual N

120 thousand 10,000

24

Sorting challenge 2
• Problem: A credit card company sorts 10 million

customer account numbers, for use with binary
search.

• Question: Using mergesort, what kind of computer
is needed?

A. Toaster.

B. Cell phone.

C. Your laptop.

D. Supercomputer.

E. Google server farm.

25

Sorting challenge 3
• Question: What's the fastest way to sort 1 million

32-bit integers?

26

http://www.youtube.com/watch?v=k4RRi_ntQc8

http://www.youtube.com/watch?v=k4RRi_ntQc8
http://www.youtube.com/watch?v=k4RRi_ntQc8

Mergesort: lesson
• Lesson

– Great algorithms can be more powerful than
supercomputers

– How long to sort 1 billion things?

N = 1 billion

2 weeks

3 centuries

Insertion Mergesort
Compares
per second

Computer

3 hours 107 laptop

instant 1012 super

27

Summary
• Binary search

– Efficient algorithm to search a sorted array

• Mergesort

– Efficient algorithm to sort an array

• Applications

– Many many applications are enabled by fast
sorting and searching

28

