Performance

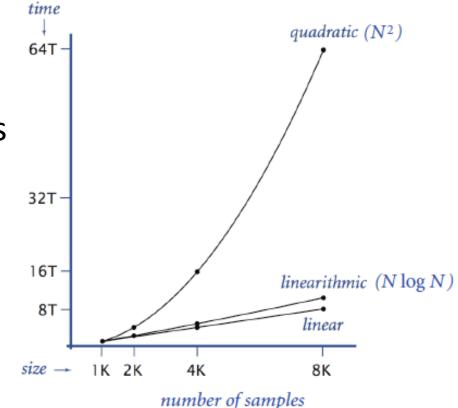
http://www.flickr.com/photos/exoticcarlife/3270764550/

http://www.flickr.com/photos/roel1943/5436844655/

CSCI 135: Fundamentals of Computer Science • Keith Vertanen • Copyright © 2013

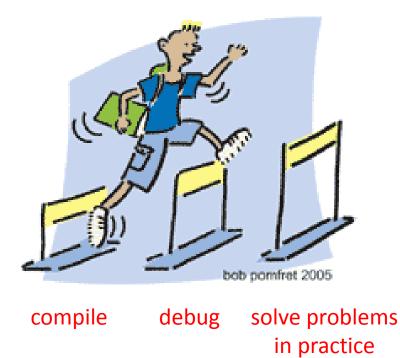
Overview

- Performance analysis
 - Why we care
 - What we measure and how
 - How functions grow
- Empirical analysis
 - The doubling hypothesis
 - Order of growth



The Challenge

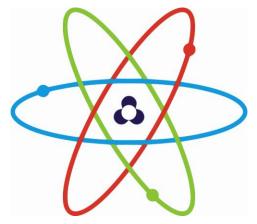
Q: Will my program be able to solve a large practical problem?



Key insight. [Knuth 1970s] Use the scientific method to understand performance.

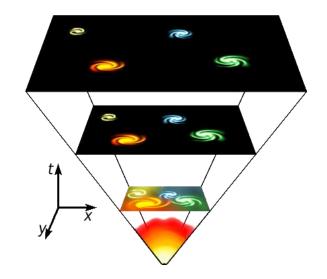
Scientific Method

- Scientific method
 - Observe some feature of the natural world
 - Hypothesize a model that is consistent with the observations
 - Predict events using the hypothesis
 - Verify the predictions by making further observations
 - Validate by repeating until the hypothesis and observations agree
- Principles
 - Experiments must be reproducible
 - Hypothesis must be falsifiable



Why performance analysis

- Predicting performance
 - When will my program finish?
 - Will my program finish?

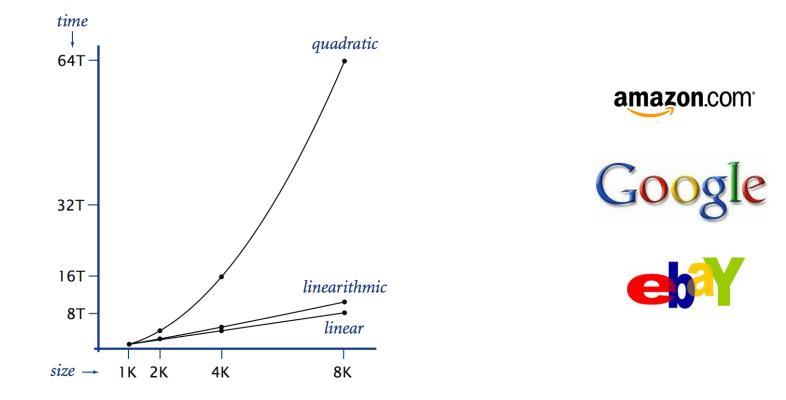


- Compare algorithms
 - Should I change to a more complicated algorithm?
 - Will it be worth the trouble?
- Basis for inventing new ways to solve problems
 - Enables new technology
 - Enables new research

Algorithmic successes

• Sorting

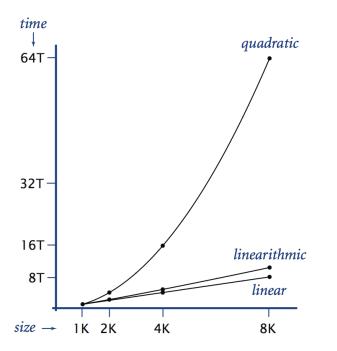
- Rearrange array of N item in ascending order
- Applications: databases, scheduling, statistics, genomics, ...
- Brute force: N^2 steps
- Mergesort: N log N steps, enables new technology



John von Neumann

Algorithmic successes

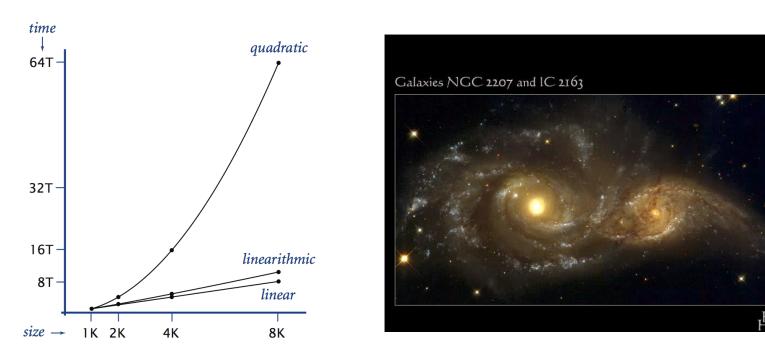
- Discrete Fourier transform
 - Break down waveform of N samples into periodic components
 - Applications: DVD, JPEG, MRI, astrophysics,
 - Brute force: N^2 steps
 - FFT algorithm: N log N steps, enables new technology



Freidrich Gauss (1805)

Algorithmic successes

- N-body Simulation
 - Simulate gravitational interactions among N bodies
 - Application: cosmology, semiconductors, fluid dynamics, ...
 - Brute force: N^2 steps
 - Barnes-Hut algorithm: N log N steps, enables new research



Performance metrics

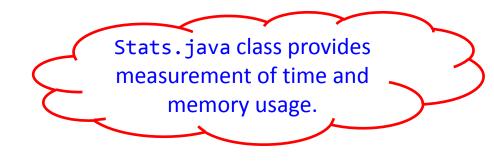
- What do we care about?
 - Time, how long do I have to wait?
 - Measure with a stop watch (real or virtual)
 - Run in a performance profiler
 - Often part of an IDE (e.g. Microsoft Visual Studio)
 - Sometimes standalone (e.g. gprof)
 - Helps you determine bottleneck in your code

long	start	= System.currentTimeMillis();
// Do	the stuf	f you want to time
•	now e elapsed	= System. <i>currentTimeMillis</i> (); Secs = (now - start) / 1000.0;

Measuring how long some code takes.

Performance metrics

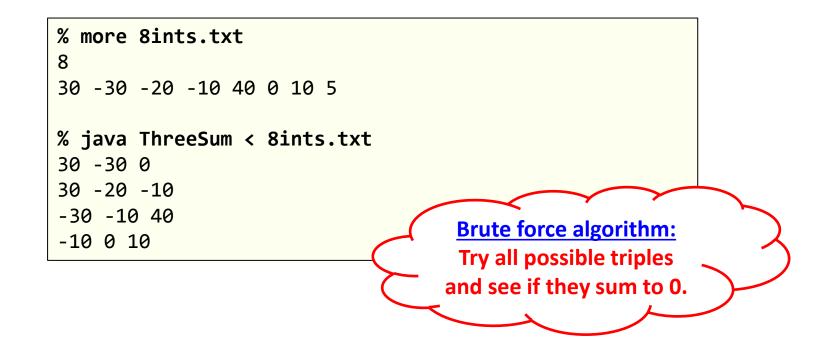
- What do we care about?
 - Space, do I have the resources to solve it?
 - Usually we care about physical memory
 - 8 GB = 8.6 billion places to store a byte (byte = 256 possibilities)
 - Java double, 64-bits = 8 bytes
 - 8 GB / 8 bytes = over 1 million doubles!
 - Can swap to disk for some extra space
 - But much much slower



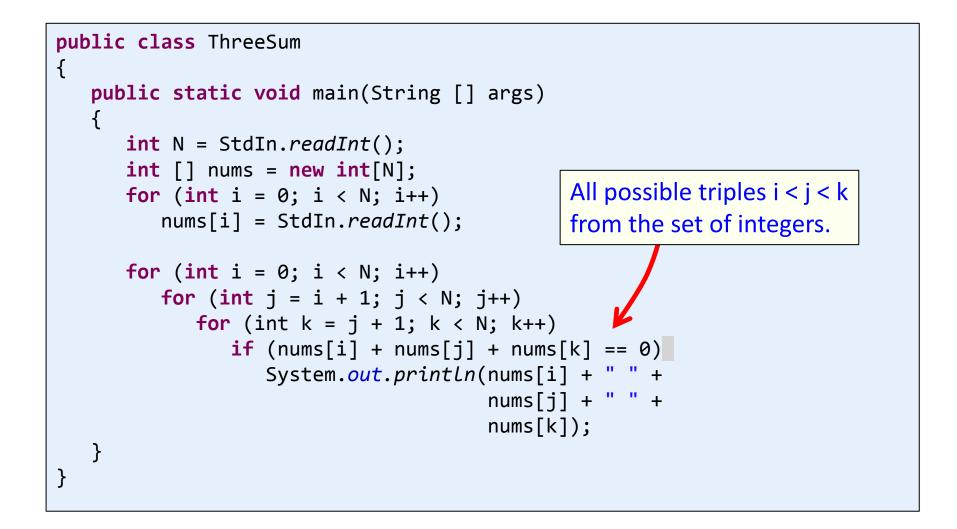
A "simple" problem

• Three-sum problem

- Given N integers, find all triples that sum to 0

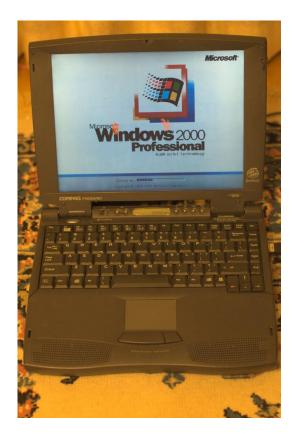


Three sums: brute-force



Empirical analysis: three sum

- Run program for various input sizes, 2 machines:
 - My first laptop: Pentium 1, 150Mhz, 80MB RAM
 - My desktop: Phenom II, 3.2Ghz (3.6Ghz turbo), 32GB RAM



VS.

Empirical analysis: three sum

- Run program for various input sizes, 2 machines:
 - My first laptop: Pentium 1, 150Mhz, 80MB RAM
 - My desktop: Phenom II, 3.2Ghz (3.6Ghz turbo), 32GB RAM

Ν	ancient laptop	modern desktop
100	0.33	0.01
200	2.04	0.04
400	11.23	0.16
800	94.96	0.63
1600	734.03	4.33
3200	5815.30	33.69
6400	47311.43	263.82

Doubling hypothesis

• Cheap and cheerful analysis

...

- Time program for input size N
- Time program for input size 2N
- Time program for input size 4N
- Ratio T(2N) / T(N) approaches a constant

Desktop data

- Constant tells you the exponent in $T = aN^b$

Constant from ratio	Hypothesis	Order of growth
2	T = a N	linear, O(N)
4	$T = a N^2$	quadratic, O(N ²)
8	T = a N ³	cubic, O(N ³)
16	$T = a N^4$	O(N ⁴)

Ν	T(N)	ratio
400	0.16	-
800	0.63	3.94
1600	4.33	6.87
3200	33.69	7.78
6400	263.82	7.83

Estimating constant, making predictions

	Ν	T(N)	ratio		Ν	T(N)	ratio
	400	0.16	-		400	11.23	-
	800	0.63	3.94		800	94.96	8.45
	1600	4.33	6.87		1600	734.03	7.72
	3200	33.69	7.78		3200	5815.30	7.92
	6400	263.82	7.83		6400	47311.43	8.14
	Desktop data				La	ptop data	
T = a N ³					T = a N ³		
263.82 = a (6400) ³ a = 1.01 x 10 ⁻⁰⁹			473	811.43 = a a=1.8	(6400) ³ 0 x 10 ⁻⁰⁷		
How long for desktop to solve a 100,000 integer problem?				How long for laptop to solve a 100,00 integer problem?			
1.01 x 10 ⁻⁰⁹ (100000) ³ = 1006393 secs = 280 hours			1.8	0 x 10 ⁻⁰⁷ (10	00000) ³ = 1.3 = 50	80 x 10 ⁰⁸ 133 hour	

Bottom line

- My three sum algorithm sucks
 - Does not scale to large problems \rightarrow an algorithm problem
 - 15 years of computer progress didn't help much
 - My algorithm: O(N³)
 - A slightly more complicated algorithm: O(N² log N)

Using the better algorithm, how long does it take the desktop to solve a 100,000 integer problem?

1.01 x 10⁻⁰⁹ (100000)² log(100000) = 168 secs

Using the better algorithm, how long does it take the ancient laptop to solve a 100,000 integer problem?

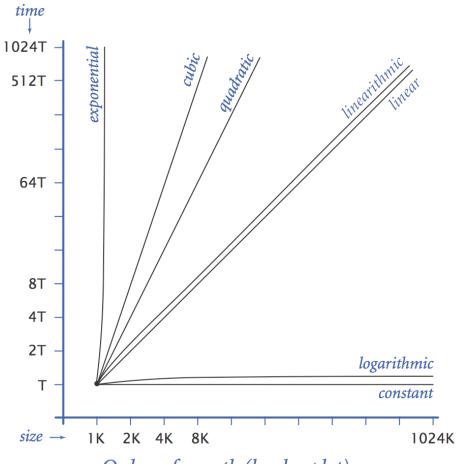
 $1.80 \times 10^{-07} (100000)^2 \log(100000) = 29897 \text{ secs}$

This assumes the same constant. Really should do the doubling experiment again with the new algorithm.

Constant in the time equation

- What influences the constant a?
 - $e.g. T = a N^2$
 - Speed of computer (CPU, memory, cache, ...)
 - Implementation of algorithm
 - Body inside the nested for-loops may use more or less instructions
 - Software
 - Operating system
 - Compiler
 - Garbage collector
 - System
 - Other applications
 - Network (e.g. Windows update)

Order of growth



Orders of growth (log-log plot)

Doubling hypothesis ratio	Hypothesis	Order of growth
1	T = a	constant
1	T = a log N	logarithmic
2	T = a N	linear
2	T = a N log N	linearithmic
4	$T = a N^2$	quadratic
8	T = a N ³	cubic
2 ^N	T = a 2 ^N	exponential

Order of Growth: Consequences

predicted running time if problem size is increased by a factor of 100	order of growth	of problem size increase if computer speed is increased by a factor of 10
a few minutes	linear	10
a few minutes	linearithmic	10
several hours	quadratic	3-4
a few weeks	cubic	2-3
forever	exponential	1
	problem size is increased by a factor of 100 a few minutes a few minutes several hours a few weeks	predicted running time if problem size is increased by a factor of 100problem size is increased by a factor of 100a few minuteslineara few minuteslinearithmicseveral hoursquadratica few weekscubic

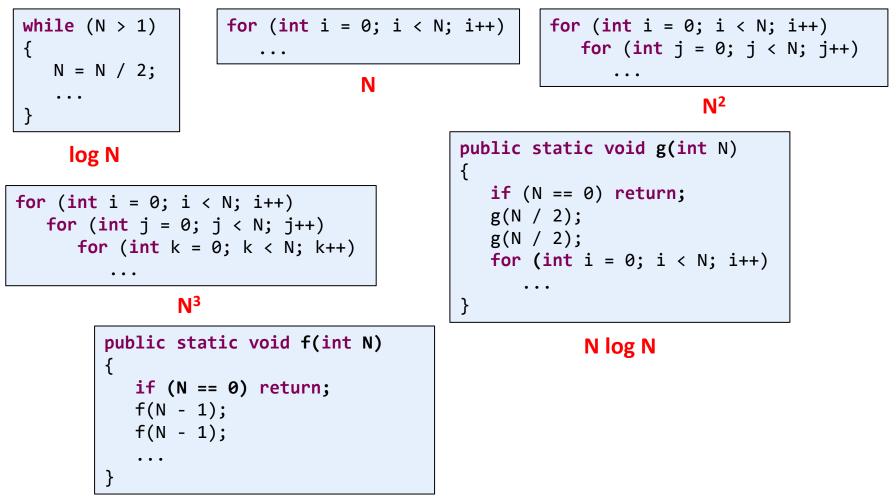
Effect of increasing problem size for a program that runs for a few seconds

Effect of increasing computer speed on problem size that can be solved in a fixed amount of time

predicted factor

Order of growth

A small number of functions describe the running time of many fundamental algorithms!



Growth of nested loops

• Nested loops

- A good clue to order of growth
- But each loop must execute "on the order of" N times
- If loop not a linear function of N, loop doesn't cause order to grow

Ν	T(N)	ratio		
5000	6.85	-		
10000	53.48	7.8		
20000	425.97	8.0		
425.97 = a (20000 ³) a = 1.06 x 10 ⁻⁶				

<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < 10000; k++)</pre>
count++;

N ²

Ν	T(N)	ratio			
5000	13.40	-			
10000	53.20	3.97			
20000	212.49	3.99			
212.49 = a (20000 ²)					
a = 5.31 x 10 ⁻⁷					

N³NT(N)ratio50006.85-1000053.487.820000425.978.0 $425.97 = a (20 \cup 00^3)$ $a = 1.06 \times 10^{-6}$

N²

Ν		T(N)	ratio			
	5000	13.40	-			
	10000	53.20	3.97			
	20000	212.49	3.99			
212.49 = a (20000 ²)						
	a = 5.31 x 10 ⁻⁷					

N³

IN							
Ν		T(N)	ratio				
	5000	1.59	-				
	10000	11.08	6.97				
	20000	86.36	7.79				
86.36 = a (20000 ³)							

 $a = 2.16 \times 10^{-7}$

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < 10; k++)
count++;</pre>

N²

Ν	T(N)	ratio				
5000	0.11	-				
10000	0.37	3.36				
20000	1.47	3.97				
1.47 = a (20000 ²)						
a = 3.68 x 10 ⁻⁹						

String processing example

• Goal: Strip all numbers 0-9 from a String

- Go one char at a time, dropping any that are 0-9

```
private String stripNums(String text)
ł
   String result = "";
   for (int i = 0; i < text.length(); i++)</pre>
   {
      char ch = text.charAt(i);
      if ((ch < '0') || (ch > '9'))
         result += ch;
   return result;
}
                                    As a function of the
                                    length of the string
                                    text, what order of
                                  growth is this method?
```

String processing, doubling hypothesis

- Read file with String of different lengths (N)
- Time how long it takes to run stripNums()

Ν	T(N)	ratio
	8k 0.056	-
-	.6k 0.150	2.7
	2k 0.520	3.5
(54k 1.932	3.7
12	.8k 8.104	4.2
25	6k 36.267	4.5
5:	.2k 180.275	5.0

Trouble in String city

- Problem: String objects in Java are immutable
 - Once created, they can't be changed in any way
 - Java has to create a new object, copy the text into it
 - The old string gets garbage collected (eventually)

```
private String stripNums(String text)
{
   String result = "";
   for (int i = 0; i < text.length(); i++)
    {
        char ch = text.charAt(i);
        if ((ch < '0') || (ch > '9'))
            result += ch;
        }
        return result;
    }
    This line is a hidden for-loop
    that copies all characters in
    the current result string into
    the newly created one.
```

A better stripping method

- Solution: Use a StringBuilder object
 - Can efficiently append characters to a string
 - Convert to a normal String once the loop is done

```
private static String stripNumsFast(String text)
ſ
   StringBuilder result = new StringBuilder();
   for (int i = 0; i < text.length(); i++)</pre>
   {
      char ch = text.charAt(i);
      if ((ch < '0') || (ch > '9'))
                                            Need to call a method
         result.append(ch); 
                                            to append instead of
                                            the + operator.
   return result.toString();
                                  Convert the contents
                                  of the buffer object to
                                  a normal Java String.
```

String processing performance

Ν	T(N)	ratio
8k	0.056	-
16k	0.150	2.7
32k	0.520	3.5
64k	1.932	3.7
128k	8.104	4.2
256k	36.267	4.5
512k	180.275	5.0

Original stripNums() appending
 to a String object. Order of
 growth: N²

Ν	T(N)	ratio
8k	0.0000	-
16k	0.0100	-
32k	0.0000	-
64k	0.0100	-
128k	0.0100	-
256k	0.0100	-
512k	0.0100	-
1024k	0.0100	-
2048k	0.0200	2.0
4096k	0.0500	2.5
8192k	0.1100	2.2

New stripNumsFast() appending to a StringBuffer object. Order of growth: N

Summary

- Introduction to Analysis of Algorithms
 - Today: simple empirical estimation
 - Next year: an entire semester course
- The algorithm matters
 - Faster computer only buys you out of trouble temporarily
 - Better algorithms enable new technology!
- The data structure matters
 - String VS. StringBuilder
- Doubling hypothesis
 - Measure time ratio as you double the input size
 - If the ratio = 2^{b} , runtime of algorithm T(N) = a N b