
Performance

CSCI 135: Fundamentals of Computer Science • Keith Vertanen • Copyright © 2013

http://www.flickr.com/photos/exoticcarlife/3270764550/

http://www.flickr.com/photos/roel1943/5436844655/

http://www.flickr.com/photos/exoticcarlife/3270764550/
http://www.flickr.com/photos/roel1943/5436844655/

Overview

2

• Performance analysis

– Why we care

– What we measure and how

– How functions grow

• Empirical analysis

– The doubling hypothesis

– Order of growth

The Challenge
Q: Will my program be able to solve a large practical
problem?

Key insight. [Knuth 1970s]
Use the scientific method to understand performance.

compile debug solve problems
in practice

3

Scientific Method
• Scientific method

– Observe some feature of the natural world

– Hypothesize a model that is consistent with the observations

– Predict events using the hypothesis

– Verify the predictions by making further observations

– Validate by repeating until the hypothesis and observations
agree

• Principles

– Experiments must be reproducible

– Hypothesis must be falsifiable

4

Why performance analysis
• Predicting performance

– When will my program finish?

– Will my program finish?

• Compare algorithms

– Should I change to a more complicated algorithm?

– Will it be worth the trouble?

• Basis for inventing new ways to solve problems

– Enables new technology

– Enables new research

5

Algorithmic successes
• Sorting

– Rearrange array of N item in ascending order

– Applications: databases, scheduling, statistics, genomics, …

– Brute force: N 2 steps

– Mergesort: N log N steps, enables new technology

John von Neumann
(1945)

6

Algorithmic successes
• Discrete Fourier transform

– Break down waveform of N samples into periodic
components

– Applications: DVD, JPEG, MRI, astrophysics, ….

– Brute force: N 2 steps

– FFT algorithm: N log N steps, enables new technology

Freidrich Gauss
(1805)

7

http://redescolar.ilce.edu.mx/redescolar/act_permanentes/mate/gauss.jpg

Algorithmic successes
• N-body Simulation

– Simulate gravitational interactions among N bodies

– Application: cosmology, semiconductors, fluid dynamics, …

– Brute force: N 2 steps

– Barnes-Hut algorithm: N log N steps, enables new research

Andrew Appel
PU '81

8

Performance metrics

• What do we care about?

– Time, how long do I have to wait?

• Measure with a stop watch (real or virtual)

• Run in a performance profiler
– Often part of an IDE (e.g. Microsoft Visual Studio)

– Sometimes standalone (e.g. gprof)

– Helps you determine bottleneck in your code

9

long start = System.currentTimeMillis();

// Do the stuff you want to time

long now = System.currentTimeMillis();
double elapsedSecs = (now - start) / 1000.0;

Measuring how long some code takes.

Performance metrics

• What do we care about?

– Space, do I have the resources to solve it?

• Usually we care about physical memory
– 8 GB = 8.6 billion places to store a byte (byte = 256 possibilities)

– Java double, 64-bits = 8 bytes

– 8 GB / 8 bytes = over 1 million doubles!

• Can swap to disk for some extra space
– But much much slower

10

Stats.java class provides
measurement of time and

memory usage.

A "simple" problem

• Three-sum problem

– Given N integers, find all triples that sum to 0

11

% more 8ints.txt
8
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt
30 -30 0
30 -20 -10
-30 -10 40
-10 0 10

Brute force algorithm:
Try all possible triples

and see if they sum to 0.

Three sums: brute-force

12

public class ThreeSum
{
 public static void main(String [] args)
 {
 int N = StdIn.readInt();
 int [] nums = new int[N];
 for (int i = 0; i < N; i++)
 nums[i] = StdIn.readInt();

 for (int i = 0; i < N; i++)
 for (int j = i + 1; j < N; j++)
 for (int k = j + 1; k < N; k++)
 if (nums[i] + nums[j] + nums[k] == 0)
 System.out.println(nums[i] + " " +
 nums[j] + " " +
 nums[k]);
 }
}

All possible triples i < j < k
from the set of integers.

Empirical analysis: three sum
• Run program for various input sizes, 2 machines:

– My first laptop: Pentium 1, 150Mhz, 80MB RAM

– My desktop: Phenom II, 3.2Ghz (3.6Ghz turbo), 32GB RAM

13

VS.

Empirical analysis: three sum
• Run program for various input sizes, 2 machines:

– My first laptop: Pentium 1, 150Mhz, 80MB RAM

– My desktop: Phenom II, 3.2Ghz (3.6Ghz turbo), 32GB RAM

14

N ancient laptop modern desktop

100 0.33 0.01

200 2.04 0.04

400 11.23 0.16

800 94.96 0.63

1600 734.03 4.33

3200 5815.30 33.69

6400 47311.43 263.82

Doubling hypothesis
• Cheap and cheerful analysis

– Time program for input size N

– Time program for input size 2N

– Time program for input size 4N

– …

– Ratio T(2N) / T(N) approaches a constant

– Constant tells you the exponent in T = aNb

15

Constant from ratio Hypothesis Order of growth

2 T = a N linear, O(N)

4 T = a N2 quadratic, O(N2)

8 T = a N3 cubic, O(N3)

16 T = a N4 O(N4)

N T(N) ratio

400 0.16 -

800 0.63 3.94

1600 4.33 6.87

3200 33.69 7.78

6400 263.82 7.83

Desktop data

Estimating constant, making predictions

16

N T(N) ratio

400 0.16 -

800 0.63 3.94

1600 4.33 6.87

3200 33.69 7.78

6400 263.82 7.83

Desktop data

N T(N) ratio

400 11.23 -

800 94.96 8.45

1600 734.03 7.72

3200 5815.30 7.92

6400 47311.43 8.14

Laptop data

T = a N3

263.82 = a (6400)3

a = 1.01 x 10-09

T = a N3

47311.43 = a (6400)3

a=1.80 x 10-07

How long for desktop to solve a 100,000
integer problem?

1.01 x 10-09 (100000)3 = 1006393 secs
 = 280 hours

How long for laptop to solve a 100,000
integer problem?

1.80 x 10-07 (100000)3 = 1.80 x 1008 secs
 = 50133 hours

Bottom line
• My three sum algorithm sucks

– Does not scale to large problems → an algorithm problem

– 15 years of computer progress didn't help much

– My algorithm: O(N3)

– A slightly more complicated algorithm: O(N2 log N)

17

Using the better algorithm, how long does it
take the desktop to solve a 100,000 integer
problem?

1.01 x 10-09 (100000)2 log(100000) = 168 secs

This assumes the
same constant.
Really should do the
doubling experiment
again with the new
algorithm. Using the better algorithm, how long does it

take the ancient laptop to solve a 100,000
integer problem?

1.80 x 10-07 (100000)2 log(100000) = 29897 secs

Constant in the time equation
• What influences the constant a?

– e.g. T = a N2

– Speed of computer (CPU, memory, cache, …)

– Implementation of algorithm
• Body inside the nested for-loops may use more or less

instructions

– Software
• Operating system

• Compiler

• Garbage collector

– System
• Other applications

• Network (e.g. Windows update)

18

Order of growth

19

Doubling
hypothesis
ratio

Hypothesis Order of
growth

1 T = a constant

1 T = a log N logarithmic

2 T = a N linear

2 T = a N log N linearithmic

4 T = a N2

quadratic

8 T = a N3

cubic

2N T = a 2N

exponential

Order of Growth: Consequences

20

A small number of functions describe the running time of many
fundamental algorithms!

21

while (N > 1)
{
 N = N / 2;
 ...
}

log N

for (int i = 0; i < N; i++)
 ...

N

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 ...

N2

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 ...

N3

public static void g(int N)
{
 if (N == 0) return;
 g(N / 2);
 g(N / 2);
 for (int i = 0; i < N; i++)
 ...
}

N log N public static void f(int N)
{
 if (N == 0) return;
 f(N - 1);
 f(N - 1);
 ...
}

2N

Order of growth

22

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 count++;

N3

• Nested loops

– A good clue to order of growth

– But each loop must execute "on the order of" N times

– If loop not a linear function of N, loop doesn't cause order to
grow

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < 10000; k++)
 count++;

N2

N T(N) ratio

5000 6.85 -

10000 53.48 7.8

20000 425.97 8.0

N T(N) ratio

5000 13.40 -

10000 53.20 3.97

20000 212.49 3.99

425.97 = a (200003)
a = 1.06 x 10-6

212.49 = a (200002)
a = 5.31 x 10-7

Growth of nested loops

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 count++;

N3

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < 10000; k++)
 count++;

N2

N T(N) ratio

5000 6.85 -

10000 53.48 7.8

20000 425.97 8.0

N T(N) ratio

5000 13.40 -

10000 53.20 3.97

20000 212.49 3.99

425.97 = a (200003)
a = 1.06 x 10-6

212.49 = a (200002)
a = 5.31 x 10-7

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N / 5; k++)
 count++;

N3

N T(N) ratio

5000 1.59 -

10000 11.08 6.97

20000 86.36 7.79

86.36 = a (200003)
a = 2.16 x 10-7

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < 10; k++)
 count++;

N2

N T(N) ratio

5000 0.11 -

10000 0.37 3.36

20000 1.47 3.97

1.47 = a (200002)
a = 3.68 x 10-9

23

String processing example
• Goal: Strip all numbers 0-9 from a String

– Go one char at a time, dropping any that are 0-9

24

private String stripNums(String text)
{
 String result = "";
 for (int i = 0; i < text.length(); i++)
 {
 char ch = text.charAt(i);
 if ((ch < '0') || (ch > '9'))
 result += ch;
 }
 return result;
}

As a function of the
length of the string
text, what order of

growth is this method?

String processing, doubling hypothesis
• Read file with String of different lengths (N)

• Time how long it takes to run stripNums()

25

N T(N) ratio

8k 0.056 -

16k 0.150 2.7

32k 0.520 3.5

64k 1.932 3.7

128k 8.104 4.2

256k 36.267 4.5

512k 180.275 5.0

Order of growth:
Looks like N2

WTH?

Trouble in String city
• Problem: String objects in Java are immutable

– Once created, they can't be changed in any way

– Java has to create a new object, copy the text into it

– The old string gets garbage collected (eventually)

26

private String stripNums(String text)
{
 String result = "";
 for (int i = 0; i < text.length(); i++)
 {
 char ch = text.charAt(i);
 if ((ch < '0') || (ch > '9'))
 result += ch;
 }
 return result;
}

This line is a hidden for-loop
that copies all characters in
the current result string into
the newly created one.

A better stripping method
• Solution: Use a StringBuilder object

– Can efficiently append characters to a string

– Convert to a normal String once the loop is done

27

private static String stripNumsFast(String text)
{
 StringBuilder result = new StringBuilder();
 for (int i = 0; i < text.length(); i++)
 {
 char ch = text.charAt(i);
 if ((ch < '0') || (ch > '9'))
 result.append(ch);
 }
 return result.toString();
}

Need to call a method
to append instead of
the + operator.

Convert the contents
of the buffer object to
a normal Java String.

String processing performance

28

N T(N) ratio

8k 0.056 -

16k 0.150 2.7

32k 0.520 3.5

64k 1.932 3.7

128k 8.104 4.2

256k 36.267 4.5

512k 180.275 5.0

Original stripNums() appending
to a String object. Order of

growth: N2

N T(N) ratio

8k 0.0000 -

16k 0.0100 -

32k 0.0000 -

64k 0.0100 -

128k 0.0100 -

256k 0.0100 -

512k 0.0100 -

1024k 0.0100 -

2048k 0.0200 2.0

4096k 0.0500 2.5

8192k 0.1100 2.2

New stripNumsFast() appending to a
StringBuffer object.

Order of growth: N

Summary
• Introduction to Analysis of Algorithms

– Today: simple empirical estimation

– Next year: an entire semester course

• The algorithm matters

– Faster computer only buys you out of trouble temporarily

– Better algorithms enable new technology!

• The data structure matters

– String vs. StringBuilder

• Doubling hypothesis

– Measure time ratio as you double the input size

– If the ratio = 2b, runtime of algorithm T(N) = a N b

29

