Performance

CSC 135: Fundamentals of Computer Science • Keith Vertanen •Copyright © 2013

The Challenge

Q: Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s]
Use the scientific method to understand performance.

Overview

- Performance analysis
- Why we care
- What we measure and how
- How functions grow
- Empirical analysis
- The doubling hypothesis
- Order of growth

Scientific Method

- Scientific method
- Observe some feature of the natural world
- Hypothesize a model that is consistent with the observations
- Predict events using the hypothesis
- Verify the predictions by making further observations
- Validate by repeating until the hypothesis and observations agree
- Principles
- Experiments must be reproducible
- Hypothesis must be falsifiable

Why performance analysis

- Predicting performance
- When will my program finish?
- Will my program finish?

- Compare algorithms
- Should I change to a more complicated algorithm?
- Will it be worth the trouble?
- Basis for inventing new ways to solve problems
- Enables new technology
- Enables new research

Algorithmic successes

- Discrete Fourier transform
- Break down waveform of N samples into periodic components
reidrich Gaus
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^{2} steps
- FFT algorithm: $N \log N$ steps, enables new technology

Algorithmic successes

- Sorting
- Rearrange array of N item in ascending order

John von Neuman

- Applications: databases, scheduling, statistics, genomics, ..
- Brute force: N^{2} steps
- Mergesort: $N \log N$ steps, enables new technology

amazon.com Google eb)

Algorithmic successes

- N-body Simulation
- Simulate gravitational interactions among N bodies

- Application: cosmology, semiconductors, fluid dynamics, ..
- Brute force: N^{2} steps
- Barnes-Hut algorithm: $N \log N$ steps, enables new research

Performance metrics

- What do we care about?
- Time, how long do I have to wait?
- Measure with a stop watch (real or virtual)
- Run in a performance profiler
- Often part of an IDE (e.g. Microsoft Visual Studio)
- Sometimes standalone (e.g. gprof)
- Helps you determine bottleneck in your code

```
long start = System.currentTimeMilLis();
// Do the stuff you want to time
long now = System.currentTimeMilLis();
double elapsedSecs = (now - start) / 1000.0; // Do the stuff you want to time double elapsedSecs \(=\) (now - start \() /\) 1000.0;
```

Measuring how long some code takes.

A "simple" problem

- Three-sum problem
- Given N integers, find all triples that sum to 0
\% java ThreeSum < 8ints.txt
30-30 0
- 20 -1
30 -10 40
10010
Brute force algorithm Try all possible triples and see if they sum to 0 .
start

Performance metrics

- What do we care about?
- Space, do I have the resources to solve it?
- Usually we care about physical memory
$-8 \mathrm{~GB}=8.6$ billion places to store a byte (byte $=256$ possibilities)
- Java double, 64-bits $=8$ bytes
-8 GB / 8 bytes = over 1 million doubles!
- Can swap to disk for some extra space
- But much much slower

Three sums: brute-force

All possible triples $\mathrm{i}<\mathrm{j}<\mathrm{k}$ from the set of integers.

```
public class ThreeSum
```

public class ThreeSum
pub
pub
public static void main(String [] args)
public static void main(String [] args)
{ pub
{ pub
int N = StdIn.readInt();
int N = StdIn.readInt();
int [] nums = new int[N];
nums[i] = StdIn.readInt();
nums[i] = StdIn.readInt();
for (int i = 0; i < N; i++)
for (int i = 0; i < N; i++)
for (int j= i + 1; j<N; j++)
for (int j= i + 1; j<N; j++)
for (int k = j + 1; k < N; k++)
for (int k = j + 1; k < N; k++)
(nums[i] + nums[j] + nums[k] == 0)
(nums[i] + nums[j] + nums[k] == 0)
(nums[i] + nums[j] + nums[k] == 0)
if (nums[i] + nums[j] + nums[k] == 0)
if (nums[i] + nums[j] + nums[k] == 0)
if (nums[i] + nums[j] + nums[k] == 0)
nums[j] +
nums[j] +
nums[j] +
}
}
}

```
}
```


Empirical analysis: three sum

- Run program for various input sizes, 2 machines:
- My first laptop: Pentium 1, 150Mhz, 80MB RAM
- My desktop: Phenom II, 3.2Ghz (3.6Ghz turbo), 32GB RAM

Doubling hypothesis

- Cheap and cheerful analysis
- Time program for input size N
- Time program for input size 2 N
- Time program for input size 4N
- ...
- Ratio $\mathrm{T}(2 \mathrm{~N}) / \mathrm{T}(\mathrm{N})$ approaches a constant

N	$\mathrm{T}(\mathrm{N})$	ratio
400	0.16	-
800	0.63	3.94
1600	4.33	6.87
3200	33.69	7.78
6400	263.82	7.83

- Constant tells you the exponent in $\mathrm{T}=\mathrm{aN}^{\mathrm{b}}$

Constant from ratio	Hypothesis	Order of growth
2	$\mathrm{~T}=\mathrm{aN}$	linear, $\mathrm{O}(\mathrm{N})$
4	$\mathrm{~T}=a \mathrm{~N}^{2}$	quadratic, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
8	$\mathrm{~T}=a \mathrm{~N}^{3}$	cubic, $\mathrm{O}\left(\mathrm{N}^{3}\right)$
16	$\mathrm{~T}=a \mathrm{~N}^{4}$	$\mathrm{O}\left(\mathrm{N}^{4}\right)$

Empirical analysis: three sum

- Run program for various input sizes, 2 machines:
- My first laptop: Pentium 1, 150Mhz, 80MB RAM
- My desktop: Phenom II, 3.2Ghz (3.6Ghz turbo), 32GB RAM

\mathbf{N}	ancient laptop	modern desktop	
100	0.33	0.01	
200	2.04	0.04	
400	11.23	0.16	
800	94.96	0.63	
1600	734.03	4.33	
3200	5815.30	33.69	
6400	47311.43	263.82	

Estimating constant, making predictions

N	$\mathrm{T}(\mathrm{N})$	ratio
400	0.16	-
800	0.63	3.94
1600	4.33	6.87
3200	33.69	7.78
6400	263.82	7.83

Desktop data
$\mathrm{T}=\mathrm{a} \mathrm{N}^{3}$
$263.82=a(6400)^{3}$
$a=1.01 \times 10^{-09}$
How long for desktop to solve a 100,000 integer problem?
$1.01 \times 10^{-09}(100000)^{3}=1006393$ secs
$=280$ hours

N	$\mathrm{~T}(\mathrm{~N})$	ratio
400	11.23	-
800	94.96	8.45
1600	734.03	7.72
3200	5815.30	7.92
6400	47311.43	8.14

Laptop data

$$
\mathrm{T}=\mathrm{a} \mathrm{~N}^{3}
$$

$47311.43=a(6400)^{3}$
$a=1.80 \times 10^{-07}$
How long for laptop to solve a 100,000 integer problem?
$1.80 \times 10^{-07}(100000)^{3}=1.80 \times 10^{08}$ secs $=50133$ hours

Bottom line

- My three sum algorithm sucks
- Does not scale to large problems \rightarrow an algorithm problem
- 15 years of computer progress didn't help much
- My algorithm: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- A slightly more complicated algorithm: $\mathrm{O}\left(\mathrm{N}^{2} \log \mathrm{~N}\right)$

| Using the better algorithm, how long does it
 take the desktop to solve a 100,000 integer
 problem? |
| :--- | :--- |
| $1.01 \times 10^{-09}(100000)^{2} \log (100000)=168$ secs |

| Using the better algorithm, how long does it
 take the ancient laptop to solve a 100,000 | This assumes the
 same constant.
 Really should do the
 doubling experiment
 again with the new
 algorithm. |
| :--- | :--- | take the integer problem?

$1.80 \times 10^{-07}(100000)^{2} \log (100000)=29897$ secs

Constant in the time equation

- What influences the constant a?
- e.g. $\mathrm{T}=\mathrm{a} \mathrm{N}^{2}$
- Speed of computer (CPU, memory, cache, ...)
- Implementation of algorithm
- Body inside the nested for-loops may use more or less instructions
- Software
- Operating system
- Compiler

Garbage collector

- System
- Other applications
- Network (e.g. Windows update)

Order of Growth: Consequences

order of growth	predicted running time if problem size is increased by a factor of 100	order of growth	predicted factor of problem size increase if computer speed is increased by a factor of 10
linear	a few minutes	linear	10
linearithmic	a few minutes	linearithmic	10
quadratic	several hours	quadratic	3-4
cubic	a few weeks	cubic	2-3
exponential	forever	exponential	1
Effect of in for a program	reasing problem size at runs for a few seconds	Effect of increasing computer speed on problem size that can be solved in a fixed amount of time	

Order of growth

A small number of functions describe the running time of many fundamental algorithms!

Growth of nested loops

- Nested loops
- A good clue to order of growth
- But each loop must execute "on the order of" N times
- If loop not a linear function of N , loop doesn't cause order to grow

```for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) count++;```		
$\mathrm{N}^{3}$		
N	T(N)	ratio
5000	6.85	-
10000	53.48	7.8
20000	425.97	8.0
$425.97=\mathrm{a}\left(20000^{3}\right)$		



## String processing example

- Goal: Strip all numbers 0-9 from a String
- Go one char at a time, dropping any that are 0-9



## String processing, doubling hypothesis

- Read file with String of different lengths ( N )
- Time how long it takes to run stripNums()



## A better stripping method

- Solution: Use a StringBuilder object
- Can efficiently append characters to a string
- Convert to a normal String once the loop is done



## Trouble in String city

- Problem: String objects in Java are immutable
- Once created, they can't be changed in any way
- Java has to create a new object, copy the text into it
- The old string gets garbage collected (eventually)

```
private String stripNums(String text)
 String result = "";
 for (int i = 0; i < text.length(); i++)
 {
 char ch = text.charAt(i);
 if ((ch < '0') || (ch > '9'))
 result += ch;
 }
 return result; This line is a hidden for-loop
} that copies all characters in
the newly created one.
```


## String processing performance

N	T(N)	ratio
$8 k$	0.056	-
$16 k$	0.150	2.7
$32 k$	0.520	3.5
$64 k$	1.932	3.7
$128 k$	8.104	4.2
$256 k$	36.267	4.5
$512 k$	180.275	5.0


$N$	$T(N)$	ratio
$8 k$	0.0000	-
$16 k$	0.0100	-
$32 k$	0.0000	-
$64 k$	0.0100	-
$128 k$	0.0100	-
$256 k$	0.0100	-
$512 k$	0.0100	-
$1024 k$	0.0100	-
$2048 k$	0.0200	2.0
$4096 k$	0.0500	2.5
$8192 k$	0.1100	2.2

New stripNumsFast() appending to a StringBuffer object. Order of growth: $\mathbf{N}$

## Summary

- Introduction to Analysis of Algorithms
- Today: simple empirical estimation
- Next year: an entire semester course
- The algorithm matters
- Faster computer only buys you out of trouble temporarily
- Better algorithms enable new technology!
- The data structure matters
- String vs. StringBuilder
- Doubling hypothesis
- Measure time ratio as you double the input size
- If the ratio $=2^{b}$, runtime of algorithm $T(N)=a N^{b}$

