More on variables, arrays, debugging Overview

¢ Variables revisited

Buuuuugs...

@ik *70 ?qr\g‘ =

(Mo‘ﬁ)" n 2 \m.\ .

\Say

T i

¥ actua R ein ouUnA:
e T e g by
ve M &LM.

Fundamentals of Computer Science » Keith Vertanen « Copyright © 2013

Variable scoping

) oloone
— Scoping DDD[]DDD
* Arrays revisited ...
— Multidimensional arrays ..l
* Debugging o e
— Tip and tricks to help you keep your sanity

Variable scoping

* Variables live within their curly braces * You can declare and reuse same name again

— Once curly block finishes, variable is gone!

— But only after no longer "in scope"

public class DoStuff
{

public static void main(String [] args)

public class DoStuff
{
public static void main(String [] args)
{
int x = 9;
for (int y = @; y < 5; y++) — — . .
{ I~ y only lives in
X =X+Y; the for-loop
}
X =x*y;
} I~ v is undefined,
¥ this won't

compile!

{
int x = 9;
for (int y = 0; y < 5; y++)

X =X +Y;

}
int y = 1;

X =X *y;

This fixes the
compile error

I~ (though doesn't
really do anything

useful).

Arrays revisited Arrays revisited

* Arrays * Arrays
— Store a bunch of values under one name — You can just declare an array:
— Declare and create in one line:
int N = 8; — But x is not very useful until you "new" it:
int [] x = new int[10];
double [] speed = new double[100]; int [] x;
String [] names = new String[N]; X = new int[7];

— new creates the memory for the slots

— To get at values, use name and index between []: « Each slot holds an independent int value

int sumFirst2 = x[0] + x[1]; * Each slot initialized to default value for type
speed[99] = speed[98] * 1.1;

System.out.println(names[@]); ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ
— Array indexes start at 0! l._,_LJ__.‘-_L_@
0 | 2 3 & 5 b

int int int int int int int

Arrays revisited Arrays revisited

x[e] x[1] x[2] x[3] x[4] x[5] x[6]

QIO WisT T 0]

4 5 b 4 5 b
\ int int int int int int int | \ int int int int int int int
Y Y
X X
* Variable x refers to the whole set of slots « x[@],x[1],..,x[6] refers to value at a particular slot
* You can't use the variable x by itself for much « x[-1] or x[7] = ArrayIndexOutOfBoundsException

» Except for finding out the number of slots: x.length

Arrays revisited

x[e] x[1] x[2] x[3] x[4] x[5] x[6]

G-

b

int int int int int int int

Y
X

x[1i] refers to the value at a slot, but the slot index is
determined by variable i

e Ifi=0then x[0], ifi=1then x[1], etc.
Whatever inside [] must be an int

Whatever inside [] must be in O to x.length - 1
(inclusive)

Weather data

Goal: Read in hourly temp data for last week
— Each row is a day of the week
— Each column is a particular hour of the day

01:53 20:53

48.0/48.9(48.9|48.0(46.0(45.0|46.9(45.0|48.2 | 59.0(57.9|57.9|57.2|54.0 |50.0 | 8.9 (46.9 | 44.6 45.0
10/24/11

.1(43.0/43.0|43.0{39.9(37.9(37.4|39.0|39.0(39.0(39.0{37.9{39.2|41.0(41.0|41.0|39.0(37.9(36.0|35.6 |33.8 (32.0(32.0 30.2)

28.0§27.0(23.0(23.0{23.0{19.9(19.0(19.0|23.0{30.9(33.1|34.0|37.0|35.6 [36.0(32.0|32.0{32.0|27.0 |27.0|25.0| 21.9 (23.0

21.0/21.021.0(19.4(17.6(17.6 17.6(19.4|19.0|21.0|26.1(34.0|37.4(39.0 41.0|41.039.0|37.0|B7.037.0|34.0(35.1 (34.0

.8(32.037.0(30.9|32.0(34.0{33.130.9(32.0|35.1|39.0|41.0|39.942.1|43.0 (43.042.1|39.9(36.0|B3.1|27.0|25.0| 23.0(19.9

.9(19.0(18.0{16.0{16.0(15.1(14.0{14.0{15.1(21.0

52.0(50.0(51.1|50.0|46.0 [48.9 |#4.1|44.1|39.9(39.2
[10/29/11

6.0/45.0(44.6(44.1|44.1|44.1(44.1(42.1|42.1 41.8[4441[45.0[4645 46.0(44.1(44.1|42.8|39.0(37.0(B5.1{35.1{30.9(30.0

Two dimensional array examples

* Two dimensional arrays

— Tables of hourly temps for last week

— Table of colors for each pixel of a 2D image
— Table storing piece at each position on a

checkerboard

325 30.0

59.5 62.1 ..
60.7 61.8 ..
62.6 62.0 ..

* Declaring and creating

45.6

60.0
70.5
68.0

O

a0 0 0
.[].[]DD
u
I.I
e

Two dimensional arrays

— Like 1D, but another pair of brackets:

final int DAYS 3
final int HOURS = 24;
double [][] a = new double[DAYS][HOURS];

7:

* Accessing elements

— To specify element at the it" row and jth column:

alil(3] |
a[e][e] | a[e][1] | a[e][2] a[e][22] | a[e][23] l
a[1][e] | a[1][1] | a[1][2] a[1][22] | a[1][23]
a[6][e] | a[6][1] | a[6][2] a[6][22] | a[6][23]

Temperature
on second day
of data, last
hour of day

Reading temperature data

* Initialize all elements of our 2D array
— Nested loop reading in each value from StdIn
— Find weekly max and min temp

final int DAYS 75 .
final int HOURS = 24; Start the min at a
double [][] a = new double[DAYS][HOURS]; really high temp.
double min = Double.POSTIVE_INFINITY; Start the max at a
double max = Double.NEGATIVE_INFINITY; really low temp.

for (int row = ©; row < DAYS; row++)

for (int col = ©; col < HOURS; col++) The new min temp
a[row][col] = StdIn.readDouble(); s glther the current
min = Math.min(min, a[r‘ow][col]);&_/ min ort'he new
max = Math.max(max, a[row][col]); data point.
¥
}

System.out.println("min = " + min + ", max = " + max);

Debugging
* Computers can help find bugs
— But: computer can't automatically find all bugs!
* Computers do exactly what you ask (not
necessarily what you want)
* There is always a logical explanation!
— Make sure you saved & compiled last change

“As soon as we started programming, we found out to our surprise that it wasn't as
easy to get programs right as we had thought. Debugging had to be discovered. | can
remember the exact instant when | realized that a large part of my life from then on
was going to be spent in finding mistakes in my own programs.”

‘W -Maurice Wilkes

‘ “There has never been an unexpectedly short
$ debugging period in the history of computers.”
y - -Steven Levy

Debugging

* Majority of program development time:
— Finding and fixing mistakes! a.k.a. bugs
— It's not just you: bugs happen to all programmers

e

o6t Onkow sAasdol T, {um .03 437 015
Joeo s = Aaghem G087 ¥YE IS covuh
u.:““:f.‘ ne-ne EFSERL en) v0r5 72505500
By PRO 2.(30yn0ys
ook 2406 pewmi
Fdogs Ga 035 fodd spuvad spod Heob
Al S

Ty o,
1000 Started Gl T,A,:J(s;\‘ chest)
o I dd Test

Relow* 70 Pune| F
\mmmn Celay & ‘

fadt 1553 3
P ﬁiﬁtﬂw of buq being founl.
0| el Yo

Preventing bugs

* Have a plan
— Write out steps in English before you code
— Write comments first before tricky bits

* Use good coding style

— Good variable names
« If variable is called areait should hold an area!

— Split complicated stuff into manageable steps

—()’s are free, force order of operations you
want

— Carefully consider loop bounds
* Listen to Eclipse (IDE) feedback

Finding bugs Debugging example

* How to find bugs * Problem:

— Add debug print statements — Given an integer N > 1, compute its prime
factorization

*98=2x7?2

*17=17

*154=2x7x11

* 16,562 =2x7?x132

* 3,757,208 =23x 7 132x 397

°11,1211,111,111,111,111 = 2,071,723 x 5,363,222,357
— Possible application: Break RSA encryption

= Factor 200-digit numbers

* Print out state of variables, loop
values, etc.

* Remove before submitting
— Use debugger in your IDE
* Won't work if using file redirection
— Talk through program line-by-line
* Explainitto a:
— Programming novice
— Rubber duckie

— Teddy bear

= Used to secure Internet commerce
— Potted plant

A simple algorithm Example run
« Problem: i [N [output |
)))) 2 16562 2
— Given an integer N > 1, compute its prime 3]
factorization 4 8281
e Algorithm: 5 8281
. sy 6 8281
— Starting with i=2
7 8281 77
* Repeatedly divide N by i as long as it evenly divides, 3 169
output i every time it divides 5 s
— Increment i 10 169
—_ Repeat 11 169
12 169
13 169 1313

=
=

1
1

Buggy factorization program

public class Factors
{
public static void main(String [] args)
{
long n
for (i

= Long.parselLong(args[0])
=0; 1< n; i++)

while (n % i == @)
System.out.print(i + " ")
n=n/i

This program has many bugs!

Debugging: semantic errors

public class Factors
{
;{)ubhc static void main(String [] args) Need to start
long n = Long.parselLong(args[@]); > at 2 since 0
For‘ (int i -‘ i< n; i++) and 1 cannot
be factors.
while (n % i == @)
System.out.print(i + " ");
n=n/i;
}
}
¥ % java Factors 98
Exception in thread "main"
java.lang.ArithmeticException: / by zero
L Semantic error at Factors.main(Factors.java:8)

— Legal but wrong Java program
— Run program to identify problem

Debugging: syntax errors

public class Factors
{
public static void main(String [] args)
{
long n = Long.parselLong(args[0]
for @i =0; i< n; i++)
{
while (n % i == 0)
System.out.print(i + " @
n=n/j

* Syntax errors
— Illegal Java program
— Usually easily found and fixed

Debugging: semantic errors

public class Factors
{
public static void main(String [] args)
{
long n = Long.parselLong(args[0]);
for (int i = 2; i < n; i++)
Indentation
while (n % i == 0) does does
System.out.print(i + " "); L~ imply a block
n=n/i; of code.
}
}
¥ % java Factors 98
222222222222222222222
222222222222222222222
2222222222222222222...

Debugging: even more problems

% java Factors 5

% java Factors 6

public class Factors
{
public static void main(String [] args)
{
long n = Long.parseLong(args[@]);
for (int i = 2; i < n; i++)
while (n % i == @)
System.out.print(i + " ");
n=n/i;
}
} % java Factors 98 .
} 277% — Need newline
}

2%(_/

No output???

Missing the 3???

Success?

public class Factors
{
public static void main(String [] args)
{
long n = Long.parselLong(args[0]);
for (int i = 2; i <= n; i++)

while (n % i == 9)
{
System.out.print(i + " ");
n=n/1i;
}
}
System.out.println();

A

Fixes the "off-by-
|~ one" error in the
loop bounds.

\Fixes the lack of

line feed problem.

java Factors 5
java Factors 6
3]

java Factors 98
77

java Factors 3757208
227 1313 397

Debugging: adding trace print statement

% java Factors 5

public class Factors TRACE 2 5
{ TRACE 3 5
public static void main(String [] args) |TRACE 4 5
{
long n = Long.parselLong(args[@]); % Jjava Factors 6
for (int i = 2; i < n; i++)
TRACE 2 3
while (n % i == @)
{ \ I
System.out.println(i + " ");
n=n/ij; i for-loop
} should go up
System.out.println("TRACE" + i + " " + n); ton!

Program correct, but too slow

public class Factors
{
public static void main(String [] args)
{
long n = Long.parselLong(args[0]);
for (int 1 = 2; i <= n; i++)
% java Factors 11111111
while (n % i == @) 11 73 1e1 137
{
System.out.print(i + " "); | % java Factors 11111111111
n=n/i; 21649 51329
}
} % java Factors 11111111111111
System.out.println(); 11 239 4649 909091
}
3 % java Factors 11111111111111111
2071723 -1 -1 -1 -1 -1 -1 -1 ...

Faster version

Missing last factor

A

public class Factors
{
public static void main(String [] args)
{
long n = Long.parseLong(args[0]);
for (int i = 2; 1 <= n/i; i++) R
% java Factors 98
while (n % i == @) 277
{ . . . % java Factors 11J11f111
System.out.print(i +)| 11773 101
n=n/1ij
} % java Factors
} 21649
System.out.println();
} % java Factors
} 11 239 4649
% java Factors
2071723

Factors: analysis

* How large an integer can | factor?

29

% java Factors 3757208
22271313 397

% java Factors 9201111169755555703
9201111169755555703

3 instant instant

6 0.15 seconds instant

9 77 seconds instant

12 21 hours * 0.16 seconds
15 2.4 years * 2.7 seconds
18 2.4 millennia 92 seconds

" estimated

31

Fixed faster version

public class Factors

{

public static void main(String [] args)
{
long n = Long.parselLong(args[@
for (int i = 2; 1 <= n/i;~i++)

Need special case
to print biggest
factor (unless it
occurs more than
once)

while (n % i == @)

277
{
System.out.print(i + " "); 1y java Factors 11111111
}”=”/1i 11 73 101 137
% java Factors 11111111111
if (n > 1 21649 513239

System.out.println(n)
else
System.out.println();

))

% java Factors 98

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723 5363222357

/ " "
Handles the "corner case

Incremental development

* Split development into stages:
— Test thoroughly after each stage
* Don't move on until it's working!

* Bugs are (more) isolated to part you've just
working on

been

* Prevents confusion caused by simultaneous bugs in

several parts

Summary
Variables
— Live within their curly braces
Arrays
— Hold a set of independent values of same type
— Access single value via index between []’s
Debugging
— Have a plan before coding, use good style
— Learn to trace execution

* On paper, with print statements, using the debugger
— Incremental development

33

