Enumerations

CSCl 135: Fundamentals of Computer Science ® Keith Vertanen e Copyright © 2013

Overview

* Avoiding magic numbers
— Variables takes on a small set of values
— Use descriptive names instead of literal values
— Java enumerations
— Using in a switch statement

10

Variables from a set of values

* Magic numbers

— Where did the value come from?

— What does it mean?

— What if you mistype the number?

— What if you want to keep value in specific range?

>

{ /* TBD */

direction
direction
direction

int direction = 0;

if ((direction ==
(direction ==

}

0;
8;
-2729;

1) |l
5) |l

(direction ==
(direction ==

// Valid???
// Valid???
// Valid???

3) |1
7))

e Solution 1: Create final constants
— Descriptive names means everybody can read
— Bugs less likely, typo in name = compile error
— Final keyword ensures nobody can change value

final int NORTH
final int NORTHEAST
final int EAST
final int SOUTHEAST
final int SOUTH
final int SOUTHWEST
final int WEST
final int NORTHWEST

e we wo

e we

oo
|

oo

NoupwNnmeEo©O
o

oo

int direction = NORTH;

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
(direction == SOUTHWEST) || (direction == NORTHWEST))

{ // TBD }

Constants not always ideal

final int
final int
final int
final int
final int
final int
final int

NORTH - é;“‘\

NORTHEAST = 1;

EAST = 2; Problem 1: Tedious to type.
SOUTHEAST = 3; — Also easy to mess up, e.g.
S0 =4 setting two constants to
SOORGISSI = F same value.

WEST = 6;

NORTHWEST 7;

if ((direction == NORTHEAST)

D\/ Problem 2: Not forced to use the
friendly names.

(direction == SOUTHEAST) ||

| |
(direction == SOUTHWEST) || (direction == NORTHWEST))

{/* TBD */}

direction = @; // Valid??? Problem 3: Not forced to stay

direction = 8; // Valid?: in range. What does it mean

direction = -2729; // Vali@& to be 8 or -2729 if you are a
o compass direction?

Enumerations

* A better solution: enumerations oot
- £ . declare outside
— Specifies exact set of friendly names .
— Compiler ensures we stay in range semicolon is
optional.
——
(:: public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
L SOUTH, SOUTHWEST, WEST, NORTHWEST
public class CompassTest
{
public static void main(String [] args)
{
Compass direction = Compass.NORTH,
if ((direction == Compass.NORTHEAST) ||
(direction == Compass.SOUTHEAST) ||
(direction == Compass.SOUTHWEST) ||
(direction == Compass.NORTHWEST))
{/* TBD */}
Gi_r*;tion _ 9)&— Now a compile error.
¥ Way to watch our back compiler!
}

Enumeration tricks

* Enumerations
— Actually objects with a few handy methods:

toString() Print out friendly name corresponding to value of variable

values() Returns array of all the possible values type can take on

public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
SOUTH, SOUTHWEST, WEST, NORTHWEST}

for-each loop, goes over all
for (Compass d : direction.values()) & values of the enumeration

{

if (checkMonster(hero, d))
System.out.println("You see a monster to the " +
d.toString());

switch statement

Compass direction = Compass.NORTH;

switch (direction) Note: normaltl)y you need i
— "Compass.", but not in switc
{ cas case since Java knows type
heéro-move(0, 1);
System.out.println("Walking north"); You can have as
break; many statements
case SOUTH: ——— as you want
(/ﬁng.move(e, -1); between case and
System.out.println("Walking south");
e e break.

case EAST:
hero.move(1l, 0);
System.out.println("Walking east");
break;

case WEST:
hero.move(-1, 0);
System.out.println("Walking west");
break;

Summary

 Magic numbers considered harmful!

— Use Java enumerations instead
e Descriptive names for what each value means
e Can be used in a switch statement
* Can easily loop over all values or print out name

