
Enumerations

CSCI 135: Fundamentals of Computer Science • Keith Vertanen • Copyright © 2013

Overview

2

• Avoiding magic numbers

– Variables takes on a small set of values

– Use descriptive names instead of literal values

– Java enumerations

– Using in a switch statement

Variables from a set of values

• Magic numbers

– Where did the value come from?

– What does it mean?

– What if you mistype the number?

– What if you want to keep value in specific range?

3

int direction = 0;

...

if ((direction == 1) || (direction == 3) ||
 (direction == 5) || (direction == 7))
{ /* TBD */ }

direction = 0; // Valid???
direction = 8; // Valid???
direction = -2729; // Valid???

• Solution 1: Create final constants

– Descriptive names means everybody can read

– Bugs less likely, typo in name = compile error

– Final keyword ensures nobody can change value

4

final int NORTH = 0;
final int NORTHEAST = 1;
final int EAST = 2;
final int SOUTHEAST = 3;
final int SOUTH = 4;
final int SOUTHWEST = 5;
final int WEST = 6;
final int NORTHWEST = 7;

int direction = NORTH;

...

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
 (direction == SOUTHWEST) || (direction == NORTHWEST))
{ // TBD }

5

final int NORTH = 0;
final int NORTHEAST = 1;
final int EAST = 2;
final int SOUTHEAST = 3;
final int SOUTH = 4;
final int SOUTHWEST = 5;
final int WEST = 6;
final int NORTHWEST = 7;

int direction = 0;

...

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
 (direction == SOUTHWEST) || (direction == NORTHWEST))
{/* TBD */}

direction = 0; // Valid???
direction = 8; // Valid???
direction = -2729; // Valid???

Problem 3: Not forced to stay
in range. What does it mean
to be 8 or -2729 if you are a
compass direction?

Problem 2: Not forced to use the
friendly names.

Constants not always ideal

Problem 1: Tedious to type.
Also easy to mess up, e.g.
setting two constants to
same value.

Enumerations

• A better solution: enumerations

– Specifies exact set of friendly names

– Compiler ensures we stay in range

6

public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
 SOUTH, SOUTHWEST, WEST, NORTHWEST}
public class CompassTest
{
 public static void main(String [] args)
 {
 Compass direction = Compass.NORTH;
 if ((direction == Compass.NORTHEAST) ||
 (direction == Compass.SOUTHEAST) ||
 (direction == Compass.SOUTHWEST) ||
 (direction == Compass.NORTHWEST))
 {/* TBD */}

 direction = 0;
 }
}

Now a compile error.
Way to watch our back compiler!

Easiest to
declare outside
class.
Semicolon is
optional.

Enumeration tricks

• Enumerations

– Actually objects with a few handy methods:

7

toString() Print out friendly name corresponding to value of variable

values() Returns array of all the possible values type can take on

public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
 SOUTH, SOUTHWEST, WEST, NORTHWEST}

...

for (Compass d : direction.values())
{
 if (checkMonster(hero, d))
 System.out.println("You see a monster to the " +
 d.toString());
}

for-each loop, goes over all
values of the enumeration

switch statement

8

Compass direction = Compass.NORTH;

switch (direction)
{
 case NORTH:
 hero.move(0, 1);
 System.out.println("Walking north");
 break;
 case SOUTH:
 hero.move(0, -1);
 System.out.println("Walking south");
 break;
 case EAST:
 hero.move(1, 0);
 System.out.println("Walking east");
 break;
 case WEST:
 hero.move(-1, 0);
 System.out.println("Walking west");
 break;
}

Note: normally you need
"Compass.", but not in switch
case since Java knows type

You can have as
many statements
as you want
between case and
break.

Summary

9

• Magic numbers considered harmful!

– Use Java enumerations instead

• Descriptive names for what each value means

• Can be used in a switch statement

• Can easily loop over all values or print out name

