Enumerations Overview

* Avoiding magic numbers
— Variables takes on a small set of values
— Use descriptive names instead of literal values
— Java enumerations
— Using in a switch statement

9
0 ° M

CSCI 135: Fundamentals of Computer Science « Keith Vertanen « Copyright © 2013

Variables from a set of values ¢ Solution 1: Create final constants

* Magic numbers — Descriptive names means everybody can read

— Where did the value come from? — Bugs less likely, typo in name = compile error

— What does it mean? — Final keyword ensures nobody can change value

— What if you mistype the number?

_ . . e 2 final int NORTH = 0;
What if you want to keep value in specific range? G, p: TOTPEST o o
final int EAST = 2;
final int SOUTHEAST = 3;
int direction = @; final int SOUTH = 4;
final int SOUTHWEST = 5;
final int WEST = 6;
if ((direction == 1) || (direction == 3) || final int NORTHWEST = 7;
(direction == 5) || (direction == 7)) int direction = NORTH;
{ /* TBD */ }
q : _ 0 id???
31:2:12: : gf % xz%;j;;; if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
N X 2 o iaas (direction == SOUTHWEST) || (direction == NORTHWEST))
direction = -2729; // Vvalid??? {// 18D }

Constants not always ideal

final int NORTH
final int NORTHEAST =
final int EAST =
final int SOUTHEAST =
final int SOUTH =
final int SOUTHWEST =

Problem 1: Tedious to type.
Also easy to mess up, e.g.
setting two constants to

NousrwnNEroe

final int WEST = 6; same value.
ORTHWEST 5
(1nt©1rect1on ; \/ Problem 2: Not forced to use the
500 friendly names.

if ((direction == NORTHEAST) || (direction == SOUTHEAST) ||
(direction == SOUTHWEST) || (direction == NORTHWEST))
{/* TBD */}

Valid??? Problem 3: Not forced to stay
// Valid?? in range. What does it mean
// Valid??j €~] to be 8 or-2729if you are a
compass direction?

direction = 0;
irection =
direction

N

Enumeration tricks

* Enumerations
— Actually objects with a few handy methods:

toString() Print out friendly name corresponding to value of variable

values() Returns array of all the possible values type can take on

public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST,
SOUTH, SOUTHWEST, WEST, NORTHWEST}

coo for-each loop, goes over all
for (Compass d : direction.values()) & values of the enumeration

if (checkMonster(hero, d))
System.out.println("You see a monster to the
d.toString());

+

Enumerations

* A better solution: enumerations
— Specifies exact set of friendly names
— Compiler ensures we stay in range

Easiest to
declare outside
class.
Semicolon is
optional.

SOUTH, SOUTHWEST, WEST, NORTHWEST

< public enum Compass {NORTH, NORTHEAST, EAST, SOUTHEAST, /

public class CompassTest

public static void main(String [] args)
{
Compass direction = Compass.NORTH;
if ((direction == Compass.NORTHEAST) ||
(direction Compass.SOUTHEAST) ||
(direction == Compass.SOUTHWEST) ||
(direction == Compass.NORTHWEST))
{/* TBD */}

Y Way to watch our back compiler!

switch statement

Compass direction = Compass.NORTH;

switch (direction) Note: normally you need
{ — "Compass.", but not in switch

cas case since Java knows type
héro-move(0, 1);

System.out.println("Walking north");
break;
case SOUTH:

ero.move(0, -1);
System.out.println("Walking south");
break;

You can have as
many statements
as you want
between case and
break.

case FAST:
hero.move(1, 0);
System.out.println("Walking east");
break;

case WEST:
hero.move(-1, 0);
System.out.println("Walking west");
break;

Summary

* Magic numbers considered harmful!
— Use Java enumerations instead
* Descriptive names for what each value means
* Can be used in a switch statement
* Can easily loop over all values or print out name

